版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华市东阳市横店八校联考试卷2023-2024学年七年级上学期数学期末试卷
姓名:班级:考号:
题号——总分
评分
一、选择题(每小题3分,共30分)
1.下列比-2小的数是()
A.0B.3C.-1D.-3
2.在0竿V3,V64,0.3131131113...,3.14中,无理数共有()
A.2个B.3个C.4个D.5个
3.若代数式x-1和3x+7互为相反数,则x=()
A.3B.-3C.1D.
4.一条弯曲的公路改为直道,可以缩短路程,其数学道理是()
A.线段可以比较大小B.两点确定一条直线
C.线段有两个端点D.两点之间,线段最短
5.2022年11月1日零时为标准时点,东阳市统计局统计,2022年末,全市常住人口108.9万人,108.9万用
科学记数法表示()
A.1.089X106B.1.089X105C.1.089x107D.1089000
6.若N1和N2互余,N1与N3互补,N3=110。,则N1与N2的度数分别为()
A.50。、40°B.70。、20°C.50。、130°D.70。、110°
7.下列说法中,正确的是()
A.半是多项式B.32ab3的次数是6次
C.a2+a-1的常数项是1D.—等的系数是-2
8.有理数°、6在数轴上的位置如图所示,则下列说法正确的是()
--------1------------------i-------------1-----►
b0a
A.a+b>0B.ab>0C.\b\-|a|>0D,b-a>0
9.已知:A.B、。是同一直线上的三点,点。为45的中点,若4B=12,BC=7,则的长为()
1
A.1B.13C.13或1D.9.5
10.一般地,点/、8在数轴上分别表示有理数a、b,那么/、8之间的距离可表示为|a-6].下列选项中错误
的是()
A.同表示数。在数轴上的对应点与原点的距离
B.若满足|x-2|+|x+3|=6|时,则x的值是-3.5或2.5
C.[5+3|表示5、3在数轴上对应的两点之间的距离
D./、3分别为数轴上两点,/点对应的数为-2,8点对应的数为4,则4、5两点之间的距离为6
二、填空题(本题共24分,每小题4分)
11.-2023的相反数是.
12.用连续的自然数填空:<V15<.
13.23。14’24”化为用度表示是.
14.已知关于x的一元一次方程诟%x+3=2工+b的解为x=-3,那么关于y的一元一次方程4主(y+1)+
3=2(y+1)+b的解为.
15.如图,/C,J8C,/C=9,3C=12,4B=15.点/到直线BC的距离.C到直线48的距离是.
B
12
\
C1-------9--------A
16.如图是一个二阶幻圆模型,现将-1,2,-3,4,-5,6,-7,8分别填入圆圈内,使横、纵向以及内外
圆圈上的4个数字之和都相等,则a+b的值是.
三、解答题(本题共66分)
17.计算:
(1)-I2023X(-2)3-|V8-V9|-(-1)
(2)6.18x3.2-0.37x61.8-0.618x(-55)
2
18.先化简,再求值.
(1)(3。2—7CL)+2(层—3a+2),其中ct=l.
(2)3xy2+(3x2y—2xy2)—4(xy2—x2y),其中x=-4,y=1.
19.已知点N,B,C如图所示,根据要求完成下列各题.
BC
(1)画直线8C,线段48和射线C4.
(2)过点/画3c的垂线段/D垂足为。,并量出点/到直线8C的距离为cm.(以答题纸为测
量依据,结果精确到0.1cm).
20.
(1)解方程龙—手=娶—1
(2)在做作业时,有一个方程“2y—±=*y+■”中的■没印清,小聪问老师,老师只是说:“■是一个有理
数,该方程的解与方程5(x-l)-2(x-2)-4=1的解相同,”小聪很快补上了这个常数,同学们,你们能补上这
个常数吗?
21.列方程解应用题
欧尚超市恰好用3200元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的与得少10件,甲、乙两种
商品的进价和售价如表;(注:每件商品获利=售价-进价).
甲乙
进价(元/件)2030
售价(元/件)2540
3
(1)该商场购进甲、乙两种商品各多少件?
(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?
22.问题探索:如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点/重合,右端与数轴
上的点8重合.
—0---------kJb7.
(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点8时,它的右端在数轴上所对应的数为30;若
将木棒沿数轴向左水平移动,则当它的右端移动到点/时,它的左端在数轴上所对应的数为6,由此可得这根
木棒的长为cm.
(2)图中点/所表示的数是,点3所表示的数是.
(3)实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题
一天,豆豆去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,
我就109岁啦!”请问豆豆现在多少岁了?(画出数轴会更方便)
23.如图1,点O为直线A8上一点,过点。作射线OC,使N/OC=60。.将一直角三角板的直角顶点放在点
O处,一边(W在射线08上,另一边ON在直线4B的下方.
(1)将图1中的三角板绕点。处逆时针旋转至图2,使一边(W在N30C的内部.且恰好平分N80C,求
NCON的度数;
(2)在图3中,延长线段NO得到射线OD判断。。是否平分N/OC,请说明理由.
(3)将图1中的三角板绕点O按每秒5。的速度沿顺时针方向旋转一周,在旋转的过程中,第f秒时,直线
ON恰好平分锐角N/OC,则A的值为.(直接写出答案)
24.已知数轴上点/与点8的距离为16个单位长度,点/在原点的左侧,到原点的距离为26个单位长度,点
B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点尸从/出发,以每秒1个单位的速度向终
点C移动,设移动时间为。秒.
(1)点/表示的数为,点B表示的数为,点C表示的数为,
(2)用含/的代数式表示尸到点”和点C的距离:PA=,PC=.
(3)当点尸运动到3点时,点。从/点出发,以每秒点3个单位的速度向C点运动,。点到达C点后,
再立即以同样的速度返回,运动到终点4
①在点。向点C运动过程中,能否追上点尸?若能,请求出点。运动几秒追上.
②在点。开始运动后,P、0两点之间的距离能否为4个单位?如果能,请求出此时点尸表示的数;如果不
能,请说明理由.
5
答案解析部分
1.【答案】D
【解析】【解答】解:•••|一3|>|-2|>|-1|,
-3<-2<—1<0<3,
・•・比一2小的数是一3.
故答案为:D.
【分析】根据有理数大小的比较方法:正数大于0大于负数,绝对值大的负数反而小,进行比较即可.
2.【答案】B
【解析】【解答】解::闹=4,.•.闹是有理数.
pV3,0.3131131113...,是无理数,共三个.
故答案为:B.
【分析】根据无限不循环小数是无理数,逐一判断即可.
3.【答案】D
【解析】【解答】解:Vx-1和3x+7互为相反数,
1+3%+7=0,解得%=—|.
故答案为:D.
【分析】根据互为相反数的和为0,列出一元一次方程。进行求解即可.
4.【答案】D
【解析】【解答】解:弯曲的公路改为直道,可以缩短路程,原理是两点之间,线段最短.
故答案为:D.
【分析】根据两点之间,线段最短,可知缩短路程可以选择将弯曲的公路改为直道.
5.【答案】A
【解析】【解答】解:108.9万=1089000,用科学记数法表示1.089X
故答案为:A.
【分析】根据科学记数法的表示形式为ax10'的形式,其中1W同<10,n为整数.a和n的确定方法如下:
将原数的小数点移到从左到右第1个不是0的数字的后边即可得到a的值n的确定方法有两种:①n为比原数
整数位数少1的正整数;②小数点向左移动了几位,n就等于几,进行表示即可.
6.【答案】B
【解析】【解答】解:;Z1与N3互补,Z3=110°,
Z1=180°-110°=70°;
又•••Z1和N2互余,
6
z2=90°-70°=20°,
故答案为:B.
【分析】根据两角互补,和为180。,求出N1;再根据两角互余,和为90。,求出N2即可.
7.【答案】A
【解析】【解答】解:A、^=^a+^b,是多项式,A正确;
B、32a官的次数是1+3=4,B错误;
C、一1的常数项为一1,c错误;
D、—学的系数是—多D错误;
故答案为:D.
【分析】根据多项式的概念,单项式的系数是单项式中的数字因数,单项式的次数是单项式中所有字母的指数
和,常数项概念逐一进行判断即可.
8.【答案】C
【解析】【解答】解:由题意可得:b<0<a,且网>|a|,
A、a+b<0,A错误;
B、ab<0,B错误;
C>\b\-\a\>0,C正确;
D、b-a<0,D错误;
故答案为:C.
【分析】根据数轴可分析出:b<0<a,且网〉|a|,再根据有理数的运算法则进行计算即可.
9.【答案】C
【解析】【解答】解:
①当C在2B的延长线上时,如图所示:
AB
DC
:点。为4B的中点,若4B=12,
1
;・BD=》B=6,
:.CD=BD+CB=6+7=13;
②当C在线段AB上时,如图所示:
4
111B1
•・•点。为ZB的中点,若4B=12,
7
1
;・BD=彳48=6,
:.CD=BC-BD=7-6=1
综上所述,CD的长度为13或1.
故答案为:C.
【分析】分当C在的延长线上时和C在线段上时,两种情况讨论,利用线段间的关系计算即可.
10.【答案】C
【解析】【解答】解:A、同表示数a在数轴上的对应点与原点的距离,A不符合题意;
B、当x<-3时,—2|+|久+3|=2—久一久一3=6,解得%=—3.5;
当一3<%<2时,|x—2|+|久+3|=2—x+x+3=506,
当%>2时,|x—2|+|久+3|=%—2+久+3=6,解得x=2.5;
的值是-3.5或2.5,B不符合题意;
C、|5+3|表示5、-3在数轴上对应的两点之间的距离是为8,C符合题意;
D、4、B两点之间的距离为4—(—2)=6,D不符合题意;
故答案为:C.【分析】根据数轴上两点间的距离公式可求A、C、D,B选项需要按照x-2<0,x+3<0;x-2<0,
x+3>0;x-2>0,x+3>0三种情况分类讨论即可.
11.【答案】2023
【解析】【解答】解:-2023的相反数是-(-2023)=2023
故答案为:2023.
【分析】本题考查相反数,在一个数前面添上则这个数是原数的相反数,注意符号的化简。
12.【答案】3;4
【解析】【解答】解:9<15<16;
3<V15<4;
故答案为:3;4.
【分析】先找到和15最接近且开方能开的尽两个有理数,计算两数的算术平方根即可.
13.【答案】23.24°
【解析】【解答】解:23。14’24"
=23°14'+(24+60)’
=23°14.41
=23。+(14.4+60)。
=23.24°,
故答案为:23.24。.
【分析】根据度分秒之间的进率进行换算即可.
8
14.【答案】y=-4
【解析】【解答】解:••・关于x的一元一次方程盛为+3=2x+b的解为%=—3,
,关于y的一元一次方程2/3。+1)+3=2(y+1)+b的解为y+1=-3,
=-4;
故答案为:y--4.
【分析】根据第一个方程的解是第二个方程y+1的值,进行计算即可.
15.【答案】9;等
【解析】【解答】解:设点C到AB的距离为h.
•・,AC1CB,
11
:.SAABC="2'4。,BC=2,AB,h.
・•・h=9x12_36
T5-=^",
•••点A到直线BC的距离9,C到直线AB的距离是善.
故答案为:9;罟.
【分析】根据三角形的面积公式求解即可.
16.【答案】7或-6
【解析】【解答】解:设小圈上的数为c,大圈上的数为d
:-1+20+4-5+6-7+8=4
且横、纵向以及内外圆圈上的4个数字之和都相等
两个圈的和为2;横、竖的和也为2
-7+4+b+6=2,2+4+c+b=2,a+c+2+d=2
b=-l,c=-3,a+d=3
当a=8时,d=-5,则a+b=8—l=7
当a=-5时,d=8,则a+b=—5—1=—6
故答案为:7或6
【分析】先根据数字总和是4,内外圈的4个数字之和都相等可得,内外圈的和为2,横竖也为2,再设出空白
圈的数,列出方程求解即可.
17.【答案】⑴解:-I2023X(-2)3-|V8-V9|-(~1)
1
=_1X(_8)_|2_3|+(一耳)
=8-lx(-5)
9
=8+5=13;
(2)解:6.18x3.2-0.37x61.8-0.618x(-55)
=6.18x5.2-6.18x3.7+6.18x5.5
=6.18x(3.2-3.7+5.5)
=6.18x5=30.9.
【解析】【分析】(1)先算乘方、开方以及绝对值,再计算乘除,最后加减即可.
(2)先化为6.18,再利用乘法分配律计算即可.
18.【答案】(1)解:(3a2-7a)+2(a2-3a+2)
=3a2-7a+2a2-6a+4
=5a2-13a+4,
当a=l时,原式=5x12_13x1+4
=5-13+4
=-4;
(2)解:3xy2+(3x2y-2xy2)-4(xy2-x2y)
=3xy2+3x2y-2xy2-4xy2+4x2y
=-3xy2+7x2y,
当x=-4,y=l时,原式=-3x(-4)xl2+7x(-4)2xl
=12x1+7x16x1
=12+112
=124.
【解析】【分析】(1)先去括号,再合并同类项,最后代值计算即可.
(2)先去括号,再合并同类项,最后代值计算即可.
19.【答案】(1)解:如图所示:直线BC,线段AB和射线CA即为所求.
(2)1.8
【解析】【解答]解:(2)A到BC的距离是垂线段AD的长,量得AD的长度为1.8cm.
【分析】(1)根据直线、线段和射线的定义画出即可.
(2)根据垂线的画法过点A画BC的垂线段AD,再量出垂线段AD的长即可.
10
20.【答案】(1)解:去分母得:6x-2(1-x)=x+2-6,
去括号得:6x-2+2x=x+2-6,
移项得:6x+2x-x=2-6+2,
合并同类项得:7x=-2,
系数化为1得:x=-彳
(2)解:方程5(x-1)-2(x-2)-4=1
5x-5-2x+4-4=1即x=2,
y=2代入方程2y-9方+■得:
11
2x2-1=1X2+-,
解得:・=母
即这个常数是今
【解析】【分析】(1)先去分母,去括号,再移项,合并同类项,最后系数化成1即可.
(2)先求出第二次方程的解,可得第一个方程的解是y=2,再把y=2代入第一个方程,求出常数即可.
21.【答案】(1)解:设第一次购进甲种商品x件,则购进乙种商品(3-10)件,
根据题意得:20x+30(|x-10)=3200,
解得:x=100,
.\!x-10=40.
答:该超市第一次购进甲种商品100件、乙种商品40件.
(2)解:(25-20)X100+(40-30)><40=900(元).
答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润900元.
【解析】【分析】(1)设该商场购进甲种商品x件,则购进乙种商品弓久-10)件,根据商品进价x件数=总花费,
列出一元一次方程即可.
(2)根据商品总获利=(售价-进价)x件数,进行列式计算即可.
22.【答案】(1)8
(2)14;22
(3)解:当奶奶像妙妙这样大时,豆豆为(-35)岁,
奶奶与豆豆的年龄差为口09-(-35)]+3=48(岁),
豆豆现在的年龄为109-48-48=13(岁)
【解析】【解答]解:(1)由数轴可知三根木棒长为30-6=24(cm),
11
这根木棒的长为24+3=8(cm);
故答案为:8.
(2),..这根木棒的长为8cm,
6+8=14,
14+8=22.
图中/点所表示的数为14,8点所表示的数为22.
故答案为:14;22.
【分析】(1)根据数轴可知3倍的长为30—6=24(cm),即可求得AB.
(2)根据数轴可知6向右移动8为A,再向右移动8为B,直接计算即可.
(3)根据模型可以把奶奶与豆豆的年龄差理解为一个线段,109-(-35)就是两人年龄差的3倍,先求出两
人的年龄差.进而得到豆豆的年龄即可.
23.【答案】(1)解:•.22。。=60。,
AZ.BOC=120°,
OM恰好平分NBOC,
:.乙BOM=〃BOC=120。+2=60。,
."COM=180。一^AOC-乙BOM=60°,
"CON=乙COM+乙MON=60°+90°=150°;
(2)解:,:乙AOD=ABON(对顶角),乙BON=30。.
J.AAOD=30°,
又..Z0C=60。,
."DOC=AAOC-AAOD=60°-30°=30°.
^AOD=乙DOC
AOD平分NAOC
(3)24或60
【解析】【解答]解:(3)当直线ON恰好平分锐角乙4OC,
止匕时“ON=j^AOC=30。,
①从图1中的位置旋转到射线ON恰好平分锐角乙4OC时所旋转的度数为:30°+90°=120°,
C
M
12
••・速度为每秒5°,
:•St=120,
解得t=24.
②当射线ON的反向延长线恰好平分4WC时,
此时旋转的角度为:120°+180°=300°,
••・速度为每秒5°,
5t=300,
解得t=60.
故答案为:24或60.
【分析】(1)根据平角可求出NBOC的度数,根据角平分线定义求出NCOM的度数,进而求出NCON的度数即
可.
(2)根据对顶角相等得出乙4。。=乙BON=30°,进而求得乙4OC=2乙4。。,^AOD=乙DOC,即可证得.
(3)分射线ON恰好平分锐角乙4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年大桥设计中的路面结构分析
- 2026年电气设计对建筑节能的影响
- 2026春招:新能源笔试题及答案
- 2026春招:祥鹏航空题库及答案
- 贷款服务课件
- 货运车队安全培训课件
- 货车运输安全培训心得课件
- 货物管理培训课件
- 急诊科设备配置优化汇报
- 2026年河南轻工职业学院单招综合素质考试参考题库带答案解析
- 2025年医院作风建设行风整治专项行动方案
- 2025交通行业高质量数据集建设指南
- 2025年法医学考研法医学培训试卷(附答案)
- 县域城乡融合发展特征与高质量发展路径研究
- 青少年抑郁症干预方案
- 雨课堂在线学堂《自然辩证法概论》作业单元考核答案
- 2025年光电技术人员备考题库及答案解析
- 疾病编码肿瘤培训课件
- 聚合账户资产管理办法
- 骨关节养生课件
- 2025年福建省能源石化集团有限责任公司春季社会招聘210人笔试参考题库附带答案详解
评论
0/150
提交评论