![专题训练:角平分线中相关辅助线问题(解析版)_第1页](http://file4.renrendoc.com/view11/M01/1B/0B/wKhkGWekCbeAZVejAAF02xWdKEQ085.jpg)
![专题训练:角平分线中相关辅助线问题(解析版)_第2页](http://file4.renrendoc.com/view11/M01/1B/0B/wKhkGWekCbeAZVejAAF02xWdKEQ0852.jpg)
![专题训练:角平分线中相关辅助线问题(解析版)_第3页](http://file4.renrendoc.com/view11/M01/1B/0B/wKhkGWekCbeAZVejAAF02xWdKEQ0853.jpg)
![专题训练:角平分线中相关辅助线问题(解析版)_第4页](http://file4.renrendoc.com/view11/M01/1B/0B/wKhkGWekCbeAZVejAAF02xWdKEQ0854.jpg)
![专题训练:角平分线中相关辅助线问题(解析版)_第5页](http://file4.renrendoc.com/view11/M01/1B/0B/wKhkGWekCbeAZVejAAF02xWdKEQ0855.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题训练:角平分线中相关辅助线问题知识框架角平分线中常见辅助线总结分类讲解角平分线中常见辅助线总结方法1:角平分线上的点向两边作垂线方法:利用角平分线性质,取角平分线上一点,向被平分的角的两边作垂线注:锐角三角形的垂线在中线线段上;钝角三角形的垂线在中线线段的延长线上。目的:构造一组全等三角形1.(2021·安徽安庆市·八年级期末)如图,是等腰三角形底边上的中线,平分,交于点,,,则的面积是()A.4 B.6 C.8 D.12【答案】B【分析】作EF⊥BC于F,根据角平分线的性质得到EF=DE=2,根据三角形的面积公式计算即可.【详解】解:作EF⊥BC于F,∵AC=BC=6,CD是等腰三角形△ABC底边上的中线,∴CD⊥AB,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴△BCE的面积=×BC×EF=6,故选:B.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.(2021·黑龙江大庆市·七年级期末)如图,已知,、分别平分和且度,则______度.【答案】60【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠BAC+∠ABC,∠ECD=∠BEC+∠EBC,根据角平分线的定义可得∠EBC=∠ABC,∠ECD=∠ACD,然后整理得到∠BEC=∠BAC,过点E作EF⊥BD于F,作EG⊥AC于G,作EH⊥BA交BA的延长线于H,根据角平分线上的点到角的两边距离相等可得EF=EG=EH,再根据到角的两边距离相等的点在角的平分线上判断出AE平分∠CAH,然后列式计算即可得解.【详解】解:由三角形的外角性质得,∠ACD=∠BAC+∠ABC,∠ECD=∠BEC+∠EBC,∵BE、CE分别平分∠ABC和∠ACD,∴∠EBC=∠ABC,∠ECD=∠ACD,∴∠BEC+∠EBC=(∠BAC+∠ABC),∴∠BEC=∠BAC,∵∠BEC=30°,∴∠BAC=60°,过点E作EF⊥BD于F,作EG⊥AC于G,作EH⊥BA交BA的延长线于H,
∵BE、CE分别平分∠ABC和∠ACD,∴EF=EH,EF=EG,∴EF=EG=EH,∴AE平分∠CAH,∴∠EAC=(180°∠BAC)=(180°60°)=60°.故答案为:60°.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上的性质,熟记各性质并作辅助线是解题的关键.3.(2021·盐城市盐都区八年级月考)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④【答案】D【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,等腰三角形的判定与性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.4.(2020·广西南宁市·八年级期末)已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)见解析;(2)AD﹣AB=2BE,理由见解析;(3)3.【分析】(1)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,证明△BCE≌△DCF,根据全等三角形的性质证明结论;(2)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE≌△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH≌△OBG,根据全等三角形的性质得到∠OHB=∠OGB,根据角平分线的判定定理得到∠ODH=∠ODF,证明△ODH≌△ODF,得到DH=DF,计算即可.【详解】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE+∠ADC=180°,∠CDF+∠ADC=180°,∴∠CBE=∠CDF,在△BCE和△DCF中,,∴△BCE≌△DCF(AAS)∴BC=DC;(2)解:AD﹣AB=2BE,理由如下:如图2,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,AE=AF,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠CDF=∠CBE,在△BCE和△DCF中,,∴△BCE≌△DCF(AAS),∴DF=BE,∴AD=AF+DF=AE+DF=AB+BE+DF=AB+2BE,∴AD﹣AB=2BE;(3)解:如图3,在BD上截取BH=BG,连接OH,∵BH=BG,∠OBH=∠OBG,OB=OB在△OBH和△OBG中,,∴△OBH≌△OBG(SAS)∴∠OHB=∠OGB,∵AO是∠MAN的平分线,BO是∠ABD的平分线,∴点O到AD,AB,BD的距离相等,∴∠ODH=∠ODF,∵∠OHB=∠ODH+∠DOH,∠OGB=∠ODF+∠DAB,∴∠DOH=∠DAB=60°,∴∠GOH=120°,∴∠BOG=∠BOH=60°,∴∠DOF=∠BOG=60°,∴∠DOH=∠DOF,在△ODH和△ODF中,,∴△ODH≌△ODF(ASA),∴DH=DF,∴DB=DH+BH=DF+BG=2+1=3.【点睛】本题考查了角平分线的性质,三角形全等的判定和性质,关键是依照基础示例引出正确辅助线.5.(2020·辽宁鞍山市·八年级期中)在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)【答案】(1)DE=DF,理由见解析;(2)不一定成立【分析】(1)过点D作DM⊥AB于M,DN⊥AC于N,DM=DN,△DME≌△DNF,DE=DF;(2)如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立;【详解】(1)DE=DF.理由如下:过点D作DM⊥AB于M,DN⊥AC于N,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN,∵∠AED+∠AFD=180°,∠AFD+∠DFN=180°,∴∠DFN=∠AED,∴△DME≌△DNF(AAS),∴DE=DF;(2)不一定成立.如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立,经过(1)的证明,若在垂线段上或两侧则成立,所以不一定成立.【点睛】本题主要考查角平分线的性质,难点在于熟练和灵活的应用角平分线要点;6.(2020·武汉市六中位育中学八年级)如图,中,于点,,点在上,,连接.(1)求证:;(2)延长交于点,连接,求的度数;(3)过点作,,连接交于点,若,,直接写出的面积.【答案】(1)见解析;(2)∠CFD=135°;(3)△NBC的面积为21.【分析】(1)由“SAS”可证△BDE≌△CDA,可得BE=CA;(2)过点D作DG⊥AC于G,DH⊥BF于H,由全等三角形的性质可得∠DBE=∠ACD,S△BDE=S△ADC,由面积关系可求DH=DG,由角平分线的性质可得∠DFG=∠DFH=45°,即可求解;(3)在CD上截取DE=AD=5,连接BE,延长BE交AC于F,由△BEN≌△MCN,可得EN=CN,由三角形的面积公式可求解.【详解】证明(1)在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=CA;(2)如图2,过点D作DG⊥AC于G,DH⊥BF于H,∵△BDE≌△CDA,∴∠DBE=∠DCA,S△BDE=S△ADC,∵∠DBE+∠A=∠ACD+∠A=90°,∴∠AFB=∠CFB=90°,∵S△BDE=S△ADC,∴,∴DH=DG,又∵DG⊥AC,DH⊥BF,∴∠DFG=∠DFH=45°,∴∠CFD=135°;(3)如图3,在CD上截取DE=AD=5,连接BE,延长BE交AC于F,由(1)、(2)可得BE=AC,BF⊥AC,BD=CD=12,∵CM⊥CA,∴BF∥CM,∴∠M=∠FBN,∵CM=CA,∴CM=BE,在△BEN和△MCN中,,∴△BEN≌△MCN(AAS),∴EN=CN,∵EC=CD-DE=12-5=7,∴,∴△NBC的面积,故△NBC的面积为21.【点睛】本题是三角形综合题,考查了直角三角形的性质,全等三角形的判定和性质,角平分线的判定和性质,三角形的面积公式等知识,灵活运用这些性质解决问题是本题的关键.7.(2020·江西南昌市·八年级期中)如图,在中,已知:是它的角平分线,且.(1)求的面积;(2)在解完(1)问后,小智经过反思后发现,小慧发现,请判断小智和小慧的发现是否正确?若正确,请写出证明过程,若错误,请说明理由.【答案】(1)36,(2)都正确,证明见详解【分析】(1)过点D作DF⊥AB于F,AD是它的角平分线,利用角平分线性质有DF=DE,分别求S△ABD和S△ACD,则S△ABC=S△ABD+S△ACD计算即可(2)都正确AD是它的角平分线,,DF⊥AB,则DE=DF,由(1)知S△ABD=,S△ACD=,求两个三角形面积之比,过A作AG⊥BC于G,AG是△ABD的高,也是△ACD的高,分别求出利用高表示的三角形的面积,,再求求两个三角形面积之比即可.【详解】(1)过点D作DF⊥AB于F,AD是它的角平分线,,DF=DE=4,S△ABD=,S△ACD=,S△ABC=S△ABD+S△ACD=20+16=36,(2)都正确,AD是它的角平分线,,DF⊥AB,则DE=DF,S△ABD=,S△ACD=,,过A作AG⊥BC于G,,,,由,,小智和小慧的发现都正确.【点睛】本题考查三角形的面积与角平分线定理,掌握三角形的面积与角平分线定理,会求三角形的面积,会用面积证明角分线分得的两线段的比是解题关键.方法2过边上的点向角平分线作垂线方法:取被平分角边上一点,向角平分线作垂线,并延长至与另一个边相交适用条件:往往题干中已有线段与角平分线垂直,只需延长垂线段即可目的:构造一组关于角平分线对称的全等直角三角形1.(2020·重庆市松树桥中学校八年级月考)如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为______cm2.【答案】4.5【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出,代入求出即可.【详解】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴∴cm2,故答案为4.5.【点睛】本题考查全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.2.(2020·河南九年级期中)如图,在△ABC中,AB=8,AC=6,AM平分∠BAC,CM⊥AM于点M,N为BC的中点,连结MN,则MN的长为______.【答案】1【分析】延长CM交AB于H,证明△AMH≌△AMC,根据全等三角形的性质得到AH=AC=6,CM=MH,根据三角形中位线定理解答.【详解】解:延长CM交AB于H,∵AM平分∠BAC,∴在△AMH和△AMC中,,∴△AMH≌△AMC(ASA)∴AH=AC=6,CM=MH,∴BH=AB﹣AH=2,∵CM=MH,CN=BN,∴MN=BH=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.3.(2020·江苏省灌云高级中学城西分校八年级月考)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=4,则CE=________.【答案】2【分析】根据题意延长BA、CE相交于点F,利用“角边角”证明△BCE和△BFE全等,根据全等三角形对应边相等可得CE=EF,根据等角的余角相等求出∠ABD=∠ACF,然后利用“角边角”证明△ABD和△ACF全等,根据全等三角形对应边相等可得BD=CF,然后求解即可.【详解】解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=4,∴CE=2.故答案为:2.【点睛】本题考查全等三角形的判定与性质和等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键,难点在于作辅助线构造出全等三角形并得到与BD相等的线段CF.4.(2021·四川眉山市·八年级期末)在△ABC中,AB=AC,∠BAC=90,BD平分∠ABC交AC于点D.(1)如图1,点F为BC上一点,连接AF交BD于点E.若AB=BF,求证:BD垂直平分AF.(2)如图2,CE⊥BD,垂足E在BD的延长线上.试判断线段CE和BD的数量关系,并说明理由.(3)如图3,点F为BC上一点,∠EFC=∠ABC,CE⊥EF,垂足为E,EF与AC交于点M.直接写出线段CE与线段FM的数量关系.【答案】(1)见解析;(2)BD=2CE,理由见解析;(3)FM=2CE.【分析】(1)由BD平分∠ABC,可得∠ABE=∠FBE,可证△ABE≌△FBE(SAS),可得AE=FE,∠AEB=∠FEB=×180°=90°即可;(2)延长CE,交BA的延长线于G,由CE⊥BD,∠ABE=∠FBE,可得GE=2CE=2GE,可证△BAD≌△CAG(ASA),可得BD=CG=2CE;(3)作FM的中垂线NH交CF于N,交FM于H,由FN=MN,MH=FH=FM,可得∠NMH=∠NBH,由∠EFC=∠ABC=22.5°,可求∠ABC=∠ACB=∠MNC=45°,可得NM=CM=FN,由外角∠EMC=∠MFC+∠MCF=22.5°+45°=67.5°,可求∠ECM=90°-∠EMC=22.5°,可证△FNH≌△CME(AAS),可得FH=CE即可.【详解】证明(1)∵BD平分∠ABC,∴∠ABE=∠FBE,∵BA=BF,BE=BE,∴△ABE≌△FBE(SAS),∴AE=FE,∠AEB=∠FEB=×180°=90°,∴BD垂直平分AF.(2)BD=2CE,理由如下:延长CE,交BA的延长线于G,∵CE⊥BD,∠ABE=∠FBE,∴GE=2CE=2GE,∵∠CED=90°=∠BAD,∠ADB=∠EDC,∴∠ABD=∠GCA,又AB=AC,∠BAD=∠CAG,,∴△BAD≌△CAG(ASA),∴BD=CG=2CE,
(3)FM=2CE,理由如下:作FM的中垂线NH交CF于N,交FM于H,∴FN=MN,MH=FH=FM,∴∠NMH=∠NBH,∵∠EFC=∠ABC=22.5°,∴∠MNC=2∠NFH=2×∠ABC=∠ABC,∵AB=AC,∠BAC=90,∴∠ABC=∠ACB=∠MNC=45°,∴NM=CM=FN,∵∠EMC=∠MFC+∠MCF=22.5°+45°=67.5°,∴∠ECM=90°-∠EMC=22.5°,∴∠NFH=∠MCE,又∵∠FHN=∠E=90°,∴△FNH≌△CME(AAS),∴FH=CE,∴FM=2FH=2CE.
【点睛】本题考查角平分线性质,三角形全等判定与性质,直角三角形两锐角互余,线段垂直平分线,三角形外角性质,掌握角平分线性质,三角形全等判定与性质,直角三角形两锐角互余,线段垂直平分线是解题关键.5.(2021·湖北八年级月考)如图,在△ABC中,∠C=90°,BC=AC,D是AC上一点,AE⊥BD交BD的延长线于E,AE=BD,且DF⊥AB于F,求证:CD=DF【答案】见解析【分析】延长AE、BC交于点F.根据同角的余角相等,得∠DBC=∠FAC;由ASA证明△BCD≌△ACF,得出AF=BD,AE=AF,由线段垂直平分线的性质得到AB=BF,再根据等腰三角形的三线合一得出BD是∠ABC的角平分线,由角平分线的性质定理即可得出结论.【解析】证明:延长AE、BC交于点F.如图所示:∵AE⊥BE,∴∠BEA=90°,又∠ACF=∠ACB=90°,∴∠DBC+∠AFC=∠FAC+∠AFC=90°,∴∠DBC=∠FAC,在△ACF和△BCD中,,∴△ACF≌△BCD(ASA),∴AF=BD.又AE=BD,∴AE=AF,即点E是AF的中点,∴AB=BF,∴BD是∠ABC的角平分线,∵∠C=90°,DF⊥AB于F,∴CD=DF.【点睛】此题考查等腰直角三角形,全等三角形的判定与性质,解题关键在于掌握判定定理和作辅助线.6.(2020·全国八年级课时练习)如图,在中,是的中点,平分,于点,延长交于点.已知,求的周长.【答案】46【分析】先证明,得到AD=AB,BN=DN,再利用点M是BC的中点证得CD=2MN,BC=2BM,由此即可求出△ABC的周长.【详解】∵平分,∴,,在和中,∴,∴.∵是的中点,,∴,,∴的周长为.【点睛】此题考查三角形全等的判定定理及性质定理,三角形的中位线的性质,证明是解题的关键,由此不仅得到AD=AB,还证得BN=DN,由此利用点M是BC的中点求出CD的长.7.(2020·四川省初一期末)如图1,点是直线上一点,点是直线上一点,且MN//PQ.和的平分线交于点.(1)求证:;(2)过点作直线交于点(不与点重合),交于点E,①若点在点的右侧,如图2,求证:;②若点在点的左侧,则线段、、有何数量关系?直接写出结论,不说理由.【答案】(1)见解析;(2)见解析;(3)【分析】(1)由平行线性质可得∠NAB+∠ABQ=180°,再由角平分线定义可得,再利用三角形内角和定理即可得∠C=90°,即可证明BC⊥AC;(2)①延长AC交PQ点F,先证明AC=FC,再证明△ACD≌△FCE,即可得AD+BE=AB;②方法与①相同.【解析】解:(1)∵MN∥PQ∴∠NAB+∠ABQ=180°∵AC平分∠NAB,BC平分∠ABQ∴∴∠BAC+∠ABC==90°在△ABC中,∵∠BAC+∠ABC+∠C=180°∴∠C=180°-(∠BAC+∠ABC)=180°-90°=90°∴BC⊥AC;(2)①延长AC交PQ于点F∵BC⊥AC∴∠ACB=∠FCB=90°∵BC平分∠ABF∴∠ABC=∠FBC∴BC=BC∴△ABC≌△FBC∴AC=CF,AB=BF∵MN∥BQ∴∠DAC=∠EFC∵∠ACD=∠FCE∴△ACD≌△FCE∴AD=EF∴AB=BF=BE+EF=BE+AD即:AB=AD+BE②线段AD,BE,AB数量关系是:AD+AB=BE如图3,延长AC交PQ点F,∵MN//PQ.∴∠AFB=∠FAN,∠DAC=∠EFC∵AC平分∠NAB∴∠BAF=∠FAN∴∠BAF=∠AFB∴AB=FB∵BC⊥AC∴C是AF的中点∴AC=FC在△ACD与△FCE中∴∴AD=EF∵AB=FB=BE-EF∴AD+AB=BE【点睛】本题考查了平行线性质,全等三角形性质判定,等腰三角形性质等,解题关键正确添加辅助线构造全等三角形.方法3过平分线上的点作一条边平行线构造等腰三角形方法:=1\*GB3①有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。如下图1=2\*GB3②通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。如下2图掌握以上知识是解题的关键.1.(2020·山东八年级期末)如图、∠ABC的平分线BF与△ABC中∠ACB的外角∠ACG的平分线CF相交于点F.过F作DF∥BC,交AB于D,交AC于E,若BD=8,DE=3,则CE的长度为________;【答案】5【分析】根据角平分线和平行线的性质可得,由等角对等边可得,所以.【详解】解:BF平分∠ABC,CF平分∠ACG.故答案为:5【点睛】本题考查了等腰三角形的判定,灵活利用角平分线及平行线的性质判证明角相等是解题的关键.2.如图5,在△ABC中,已知∠ABC和∠ACB的角平分线相交于F,经过F作DE∥BC交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为____________【答案】9分析:本题主要利用两直线平行,内错角相等,角平分线的定义以及三角形中等角对等边的性质进行做题.【解析】∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.3.(2019·云南昆明三中八年级期末)(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)【答案】(1)见详解;(2)BD+CE=DE,证明过程见详解;(3)BD﹣CE=DE,证明过程见详解【分析】(1)根据平行线的性质和角平分线定义得出∠DFB=∠CBF,∠ABF=∠CBF,推出∠DFB=∠DBF,根据等角对等边推出即可;(2)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论;(3)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论.【详解】解:(1)∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;(2)BD+CE=DE,理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE=EF,∵DE=DF+EF,∴BD+CE=DE;(3)BD﹣CE=DE.理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE=EF,∵DE=DF﹣EF,∴BD﹣CE=DE.【点睛】本题考查了角平分线定义,平行线的性质,等腰三角形的判定等知识点,本题具有一定的代表性,三个问题证明过程类似.4.(2020·江阴市云亭中学八年级月考)如图,△ABC中,∠ABC,∠ACB的平分线交于O点,过O点作EF∥BC交AB,AC于E,F.(1)如图①,当AB=AC时图中有个等腰三角形.(2)如图②,写出EF与BE、CF之间关系式,并说明理由.(3)如图③,若△ABC中∠ABC的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.EF与BE、CF关系又如何?说明你的理由.【答案】(1)5;(2)EF=BE+CF,理由见解析;(3)EF=BE-CF,理由见解析【分析】(1)由AB=AC,可得∠ABC=∠ACB;又已知OB、OC分别平分∠ABC、∠ACB;故∠EBO=∠OBC=∠FCO=∠OCB;根据EF∥BC,可得∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO;由此可得出△ABC,△OBC,△EBO,△CFO,△AEF都是等腰三角形;
(2)由EF∥BC,可得∠2=∠3,又∠1=∠2,根据等量代换得到∠1=∠3,所以OE=BE,在△CFO中,同理可证OF=CF,继而可证得EF=BE+CF;
(3)由于OE∥BC,可得∠5=∠6,又∠4=∠5,根据等量代换得到∠4=∠6,所以OE=BE,在△CFO中,同理可证OF=CF,继而可证得EF=BE-CF.【详解】解:(1)当AB=AC时,图中有5个等腰三角形.如图1,由AB=AC,可得∠ABC=∠ACB,
又∵OB、OC分别平分∠ABC、∠ACB,∴∠EBO=∠OBC=∠FCO=∠OCB,
根据EF∥BC,可得∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO,
由此可得出△ABC,△OBC,△EBO,△CFO,△AEF都是等腰三角形.故答案为:5;
(2)关系式:EF=BE+CF如图,∵EF∥BC,∴∠2=∠3,
又∵∠1=∠2,∴∠1=∠3,∴OE=BE,在△CFO中,同理可证OF=CF,
∵EF=EO+FO,∴EF=BE+CF;
(3)关系式:EF=BE-CF如图,∵OE∥BC,∴∠5=∠6,
又∠4=∠5,∴∠4=∠6,∴OE=BE,
在△CFO中,同理可证OF=CF,∵EF=EO-FO,∴EF=BE-CF.【点睛】本题考查了等腰三角形的判定与性质,解决问题的关键灵活运用等腰三角形的性质.解题时注意:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.5.(2020·沈阳市第一二七中学八年级期中)已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB、∠ACD,EF∥BC,分别交AC、CF于点H、F求证:EH=HF【答案】见解析【分析】由角平分线的定义可得∠BCE=∠ACE,∠ACF=∠DCF,由平行线的性质可得∠BCE=∠CEF,∠CFE=∠DCF,利用等量代换可得∠ACE=∠CEF,∠CFE=∠ACF,根据等角对等边即可求得EH=CH=HF,进而求得EH=HF.【详解】∵CE、CF分别平分∠ACB、∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∵EF∥BC,∴∠BCE=∠CEF,∠CFE=∠DCF,∴∠ACE=∠CEF,∠CFE=∠ACF,∴EH=CH,CH=HF,∴EH=HF.【点睛】本题考查了平行线的性质,等腰三角形的判定和性质,根据等角对等边求解是解题关键.方法4利用角平分线的性质,在角两边截长补短方法:在角的两边上实施截长或补短目的:构造出已角平分线为对称轴的全等三角形1.(2021·安徽合肥市·八年级期末)如图,在中,,平分.(1)如图1,若,求证:;(2)如图2,若,求的度数;(3)如图3,若,求证:.【答案】(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D作DM⊥AB于M,由CA=CB,,得是等腰直角三角形,根据角平分线的性质得到CD=MD,∠ABC=45°,根据全等三角形的性质得到AC=AM,于是得到结论;(2)如图2,设∠ACB=α,则∠CAB=∠CBA=90°−α,在AB上截取AK=AC,连结DK,根据角平分线的定义得到∠CAD=∠KAD,根据全等三角形的性质得到∠ACD=∠AKD=α,根据三角形的内角和即可得到结论;(3)如图3,在AB上截取AH=AD,连接DH,根据等腰三角形的性质得到∠CAB=∠CBA=40°,根据角平分线的定义得到∠HAD=∠CAD=20°,求得∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,根据全等三角形的性质得到∠ACB=∠AKD=100°,CD=DK,根据等腰三角形的性质得到DH=BH,于是得到结论.【详解】(1)如图1,过D作DM⊥AB于M,∴在中,,∴∠ABC=45°,∵∠ACB=90°,AD是角平分线,∴CD=MD,∴∠BDM=∠ABC=45°,∴BM=DM,∴BM=CD,在RT△ADC和RT△ADM中,,∴RT△ADC≌RT△ADM(HL),∴AC=AM,∴AB=AM+BM=AC+CD,即AB=AC+CD;(2)设∠ACB=α,则∠CAB=∠CBA=90°−α,在AB上截取AK=AC,连结DK,如图2,∵AB=AC+BD,AB=AK+BK∴BK=BD,∵AD是角平分线,∴∠CAD=∠KAD,在△CAD和△KAD中,∴△CAD≌△KAD(SAS),∴∠ACD=∠AKD=α,∴∠BKD=180°−α,∵BK=BD,∴∠BDK=180°−α,∴在△BDK中,180°−α+180°−α+90°−α=180°,∴α=108°,∴∠ACB=108°;(3)如图3,在AB上截取AH=AD,连接DH,∵∠ACB=100°,AC=BC,∴∠CAB=∠CBA=40°,∵AD是角平分线,∴∠HAD=∠CAD=20°,∴∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,由(1)得,△CAD≌△KAD,∴∠ACB=∠AKD=100°,CD=DK,∴∠DKH=80°=∠DHK,∴DK=DH=CD,∵∠CBA=40°,∴∠BDH=∠DHK-∠CBA=40°,∴DH=BH,∴BH=CD,∵AB=AH+BH,∴AB=AD+CD.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.2.(2020·太原市晋泽中学校初二月考)在△ABC中,∠ACB=2∠B,(1)如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.请证明AB=AC+CD;(2)①如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请直接写出你的结论,不要求证明;②如图③,当∠C≠90°,AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明.【答案】(1)证明见解析;(2)①AB=AC+CD;②AC+AB=CD,证明见解析.【分析】(1)首先得出△AED≌△ACD(SAS),即可得出∠B=∠BDE=45°,求出BE=DE=CD,进而得出答案;(2)①首先得出△AED≌△ACD(SAS),即可得出∠B=∠BDE,求出BE=DE=CD,进而得出答案;②首先得出△AED≌△ACD(SAS),即可得出∠B=∠EDC,求出BE=DE=CD,进而得出答案.【解析】解:(1)∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED=90°,∵∠ACB=2∠B,∠C=90°,∴∠B=45°,∴∠BDE=45°,∴BE=ED=CD,∴AB=AE+BE=AC+CD;(2)①AB=AC+CD.理由:在AB上截取AE=AC,连接DE,∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠B+∠BDE=∠AED,∴∠B=∠BDE,∴BE=ED=CD,∴AB=AE+BE=AC+CD;②AC+AB=CD.理由:在射线BA上截取AE=AC,连接DE,∵AD为∠EAC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠ACD=∠AED,∵∠ACB=2∠B,∴设∠B=x,则∠ACB=2x,∴∠EAC=3x,∴∠EAD=∠CAD=1.5x,∵∠ADC+∠CAD=∠ACB=2x,∴∠ADC=0.5x,∴∠EDC=x,∴∠B=∠EDC,∴BE=ED=CD,∴AB+AE=BE=AC+AB=CD.【点睛】此题主要考查了全等三角形的判定与性质以及三角形外角的性质等知识,利用已知得出△AED≌△ACD是解题关键.3.(2021·湖北武汉市·八年级期末)如图1,在中,,分别是和的角平分线,和相交于点.(1)求证:平分;(2)如图2,过作于点,连接,若,,求证:;(3)如图3,若,求证:.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)过D点分别作三边的垂线,垂足分别为G、H、K,根据角平分线的定义可证得DG=DH=DK,从而根据角平分线的判定定理可证得结论;(2)作,,在上取一点,使,通过证明和得到,从而根据等角对等边判断即可;(3)延长至,使,连接,通过证明得到,再结合即可得出结论.【详解】(1)证明:如图所示,过D点分别作三边的垂线,垂足分别为G、H、K,∵,分别是和的角平分线,∴,∴平分;(2)证明:如图,作,,在上取一点,使.∵平分,∴,∵,,∴,在四边形中,,又∵,∴,在和中,∴,∴,在和中∴,∴又∵,,∴,∴;(3)证明:延长至,使,连接.∵,分别是和的角平分线,∴,又∵,∴,∴,∵,∴,在和中,,∴,∴,∴,∴,∴.【点睛】本题考查角平分线的性质与判断,以及全等三角形的判定与性质,灵活结合角平分线的性质构造辅助线是解题关键.4.(2021·北京顺义区·八年级期末)已知:如图,,,分别平分和,点E在上.用等式表示线段、、三者之间的数量关系,并证明.【答案】AB=AC+BD,证明见详解.【分析】延长AE,交BD的延长线于点F,先证明AB=BF,进而证明△ACE≌△FDE,得到AC=DF,问题得证.【详解】解:延长AE,交BD的延长线于点F,∵,∴∠F=∠CAF,∵平分,∴∠CAF=∠BAF,∴∠F=∠BAF,∴AB=BF,∵平分,∴AE=EF,∵∠F=∠CAF,∠AEC=∠FED,∴△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度市政道路施工人工费结算合同
- 2025年度建筑工程施工安全生产监督返费合同
- 2025年度文化创意产品开发借款借据合同范本
- 钦州2025年广西钦州市事业单位招聘893人笔试历年参考题库附带答案详解
- 莆田2025年福建莆田市涵江区区直事业单位招聘研究生5人笔试历年参考题库附带答案详解
- 安全生产三项制度
- 漯河2024年河南漯河市城市管理局所属事业单位人才引进13人笔试历年参考题库附带答案详解
- 昆明云南昆明市晋宁区六街镇中心幼儿园招聘编外工作人员笔试历年参考题库附带答案详解
- 2025年中国双眼脉冲炉市场调查研究报告
- 2025年中国三字扣市场调查研究报告
- 《社会主义市场经济理论(第三版)》第一章社会主义市场经济基础论
- 银行授信尽职调查课件
- 河北省县市乡镇卫生院社区卫生服务中心基本公共卫生服务医疗机构名单目录地址2415家
- 视频号精细化运营培训课件
- 土木工程专业毕业论文任务书 土木工程专业电大毕业论文
- (完整版)汉密尔顿焦虑量表(HAMA)
- 电力电子技术全套课件
- 编外人员录用审批表
- 倪海厦《天纪》讲义
- 建设年饲养240万只蛋雏鸡培育基地项目可行性研究报告
- 黄金太阳漆黑的黎明金手指
评论
0/150
提交评论