




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第22章22.1.2二次函数二次函数二次函数y=ax2的图象和性质数缺形时少直觉,形缺数时难入微。数形结合百般好,隔离分家万事非。
华罗庚
1.会用描点法画出二次函数的图象;2.根据图象观察、分析出二次函数的性质;3.进一步理解二次函数和抛物线的有关知识;
复习一般地,形如y=ax2+bx+c(a、b、c为常数,a≠0)的函数,叫做二次函数.其中,x是自变量,a、b、c分别是函数表达式的二次项系数、一次项系数和常数项.二次函数:
下列哪些函数是二次函数?一次函数?(1)y=3x-l(2)y=2x²+7(3)y=x-2(4)y=(x+3)²-x²(5)y=3(x-1)²+1一次函数的图像是一条直线,二次函数的图像是什么形状呢?通常怎样画一个函数的图像?思考x…-3-2-101
23…y=x2二次函数的图像画函数y=x2的图像解:(1)列表…9410149…(2)描点(3)连线12345x12345678910yo-1-2-3-4-5根据表中x,y的数值在坐标平面中描点(x,y),再用平滑曲线顺次连接各点,就得到y=x2的图像.还记得如何用描点法画一个函数的图像吗?y=x2xy0-4-3-2-11234108642-2描点,连线y=x2?二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线这条抛物线关于y轴对称,y轴就是它的对称轴.
对称轴与抛物线的交点叫做抛物线的顶点.
议一议(2)图象与x轴有交点吗?如果有,交点坐标是什么?(4)当x<0时,随着x的值增大,y的值如何变化?当x>0呢?(3)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?观察图象,回答问题:xyO(1)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点?当x<0(在对称轴的左侧)时,y随着x的增大而减小.
当x>0(在对称轴的右侧)时,y随着x的增大而增大.
当x=-2时,y=4当x=-1时,y=1当x=1时,y=1当x=2时,y=4抛物线y=x2在x轴的上方(除顶点外),顶点是它的最低点,开口向上,并且向上无限伸展;当x=0时,函数y的值最小,最小值是0.x…-3-2-101
23…y=-x2二次函数的图像请画函数y=-x2的图像解:(1)列表…-9-4-10-1-4-9…(2)描点(3)连线根据表中x,y的数值在坐标平面中描点(x,y),再用平滑曲线顺次连接各点,就得到y=-x2的图像.12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10y=-x2做一做xy0-4-3-2-11234-10-8-6-4-22-1描点,连线y=-x2?当x<0(在对称轴的左侧)时,y随着x的增大而增大.
当x>0(在对称轴的右侧)时,y随着x的增大而减小.
y
当x=-2时,y=-4
当x=-1时,y=-1当x=1时,y=-1当x=2时,y=-4抛物线y=-x2在x轴的下方(除顶点外),顶点是它的最高点,开口向下,并且向下无限伸展;当x=0时,函数y的值最大,最大值是0.xyoxyo从图像可以看出,二次函数y=x2和y=-x2的图像都是一条曲线,它的形状类似于投篮球或投掷铅球时球在空中所经过的路线.这样的曲线叫做抛物线.y=x2的图像叫做抛物线y=x2.y=-x2的图像叫做抛物线y=-x2.实际上,二次函数的图像都是抛物线.它们的开口向上或者向下.一般地,二次函数y=ax2+bx+c的图像叫做抛物线y=ax2+bx+c.二次函数的图像还可以看出,二次函数y=x2和y=-x2的图像都是轴对称图形,y轴是它们的对称轴.抛物线与对称轴的交点叫做抛物线的顶点.抛物线y=x2的顶点(0,0)是它的最低点.抛物线y=-x2的顶点(0,0)是它的最高点.y=x2y=-x21.抛物线y=ax2的顶点是原点,对称轴是y轴.2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.二次函数y=ax2的性质归纳例题与练习x…-4-3-2-101
234…y=x2例1.在同一直角坐标系中画出函数y=x2和y=2x2的图像解:(1)列表(2)描点(3)连线12345x12345678910yo-1-2-3-4-512x…-2-1.5-1-0.500.511.52…y=2x28…20.500.524.58…4.58…20.500.524.58…4.512函数y=x2,y=2x2的图像与函数y=x2(图中虚线图形)的图像相比,有什么共同点和不同点?12观察不同点:共同点:开口向上;除顶点外,图像都在x轴上方开口大小不同;12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-10例题与练习x…-4-3-2-101
234…在同一直角坐标系中画出函数y=-x2和y=-2x2的图像解:(1)列表(2)描点(3)连线12x…-2-1.5-1-0.500.511.52…y=-2x2-8…-2-0.50-0.5-2-4.5-8…-4.5-8…-2-0.50-0.5-2-4.5-8…-4.5函数y=-x2,y=-2x2的图像与函数y=-x2(图中虚线图形)的图像相比,有什么共同点和不同点?12观察共同点:不同点:开口向下;除顶点外,图像都在x轴下方开口大小不同;12y=-x2归纳12345x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-1012345x12345678910yo-1-2-3-4-5一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.
当a>0时,抛物线的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小当a<0时,抛物线的开口向上,顶点是抛物线的最高点,a越大,抛物线的开口越大;
在同一坐标系内,抛物线y=ax2与抛物线y=-ax2是关于x轴对称的.a>0a<0当a>0时,在对称轴的左侧,y随着x的增大而减小。
当a>0时,在对称轴的右侧,y随着x的增大而增大。
当a<0时,在对称轴的左侧,y随着x的增大而增大。
当a<0时,在对称轴的右侧,y随着x的增大而减小。
当x=-2时,y=4当x=-1时,y=1当x=1时,y=1当x=2时,y=4当x=-2时,y=-4当x=-1时,y=-1当x=1时,y=-1当x=2时,y=-4对比抛物线,y=x2和y=-x2.它们关于x轴对称吗?一般地,抛物线y=ax2和y=-ax2呢?在同一坐标系内,抛物线与抛物线是关于x轴对称的.例题与练习1、函数y=2x2的图象的开口
,对称轴
,顶点是
;
2、函数y=-3x2的图象的开口
,对称轴
,顶点是
;向上向下y轴y轴(0,0)(0,0)做一做(1)抛物线y=2x2的顶点坐标是
,对称轴是
,
在对称轴
侧,y随着x的增大而增大;在对称轴
侧,y随着x的增大而减小,当x=
时,函数y的值最小,最小值是
,抛物线y=2x2在x轴的
方(除顶点外).(2)抛物线在x轴的
方(除顶点外),在对称轴的左侧,y随着x的
;在对称轴的右侧,y随着x的
,当x=0时,函数y的值最大,最大值是
,当x
0时,y<0.例题与练习已知y=(m+1)x是二次函数且其图象开口向上,求m的值和函数解析式m2+m解:依题意有:m+1>0①m2+m=2②解②得:m1=-2,m2=1由①得:m>-1∴m=1此时,二次函数为:y=2x2,随堂练习思考题
已知抛物线y=ax2经过点A(-2,-8)(1)求此抛物线的函数解析式;(2)判断点B(-1,-4)是否在此抛物线上。解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解出a=-2,所求函数解析式为y=-2x2.(2)因为,所以点B(-1,-4)不在此抛物线上。1、根据左边已画好的函数图象填空:(1)抛物线y=2x2的顶点坐标是
,对称轴是
,在
侧,y随着x的增大而增大;在
侧,y随着x的增大而减小,当x=
时,函数y的值最小,最小值是
,抛物线y=2x2在x轴的
方(除顶点外)。(2)抛物线在x轴的
方(除顶点外),在对称轴的左侧,y随着x的
;在对称轴的右侧,y随着x的
,当x=0时,函数y的值最大,最大值是
,当x
0时,y<0.(0,0)y轴对称轴的右对称轴的左00上下增大而增大增大而减小0课堂练习小结1.二次函数的图像都是抛物线.2.抛物线y=ax2的图像性质:(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点;|a|越大,抛物线的开口越小;(1)抛物线y=ax2的对称轴是y轴,顶点是原点.xyoa>0a<0a<0xyoy=ax2(a≠0)a>0a<0图象开口方向顶点坐标对称轴增减性极值xyOyxO向上向下(0,0)(0,0)y轴y轴当x<0时,y随着x的增大而减小。当x<0时,y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年再生资源行业市场发展分析与发展前景及投资战略研究报告
- 2025-2030年中国鲜黄瓜和小黄瓜行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国非处方(OTC)止痛药行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国铝压延制品行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国醋酸乙烯酯乳液聚合物行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国道格拉斯冷杉门行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国超声波洗瓶机行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国视频会议摄像机行业发展分析及前景趋势与投资战略研究报告
- 2025-2030年中国蓄电池测试设备行业市场深度调研及发展趋势与投资研究报告
- 2025-2030年中国苏合香提取物行业市场现状供需分析及投资评估规划分析研究报告
- 战略性绩效管理体系设计实践课件
- 电脑的认识 完整版课件
- GB∕T 37201-2018 镍钴锰酸锂电化学性能测试 首次放电比容量及首次充放电效率测试方法
- DB62∕T 2997-2019 公路工程工地建设标准
- 2021年河南中考复习专项:中考材料作文(解析版)
- 运动控制系统课程设计-双闭环直流调速系统
- 提高学生课堂参与度研究的课题
- 中央司法警官学院招生政治考察表
- 原产地规则培训讲座课件
- GB_T 22627-2022水处理剂 聚氯化铝_(高清-最新版)
- 药品不良反应报告表范例
评论
0/150
提交评论