2025年人教版高一数学上册阶段测试试卷_第1页
2025年人教版高一数学上册阶段测试试卷_第2页
2025年人教版高一数学上册阶段测试试卷_第3页
2025年人教版高一数学上册阶段测试试卷_第4页
2025年人教版高一数学上册阶段测试试卷_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年人教版高一数学上册阶段测试试卷648考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、【题文】“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2、【题文】已知直线y=-6,则直线的倾斜角为A.30°B.60°C.45°D.90°3、【题文】已知条件﹤条件﹥则是的(____)

A.充分不必要条件B.必要不充分条件。

C.充要条件D.既不充分也不必要条件4、设=(1,﹣2),=(m,1),如果向量+与平行,则•等于()A.-B.-2C.-1D.05、已知f(x)=2x,且(x≠1),则g(x)的值域是()A.(﹣∞,﹣1)B.(﹣∞,﹣1)∪(0,+∞)C.(﹣1,+∞)D.(﹣1,0)∪(0,+∞)6、下列函数中,既是偶函数,又在(0,+∞)单调递增的函数是()A.y=﹣x2B.y=2﹣|x|C.y=||D.y=lg|x|评卷人得分二、填空题(共5题,共10分)7、函数的单调减区间为.8、已知f(x)是奇函数,当x>0时,f(x)=x2-2x-3,则当x<0时,f(x)=____.9、函数在上是减函数,则实数的取值范围是___.10、【题文】圆心为(1,2)且与直线相切的圆的方程为_____________.11、【题文】在正三棱柱中,各棱长均相等,的交点为则与平面所成角的大小是_______.评卷人得分三、证明题(共9题,共18分)12、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.

(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.13、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.14、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.

(1)求证:E为的中点;

(2)若CF=3,DE•EF=,求EF的长.15、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.16、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.

求证:(1)∠CFD=∠CAD;

(2)EG<EF.17、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面积S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.18、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.19、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.20、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、解答题(共3题,共12分)21、已知.(1)当时,求的解集;(2)当且当时,恒成立,求实数的最小值.22、【题文】对于定义域为的函数如果同时满足以下三条:①对任意的总有②③若都有成立,则称函数为理想函数.

(1)若函数为理想函数,求的值;

(2)判断函数是否为理想函数;并予以证明;

(3)若函数为理想函数,假定使得且求证:.23、圆过点A(1,鈭�2)B(鈭�1,4)

求:(1)

周长最小的圆的方程;

(2)

圆心在直线2x鈭�y鈭�4=0

上的圆的方程.评卷人得分五、作图题(共1题,共10分)24、请画出如图几何体的三视图.

评卷人得分六、综合题(共4题,共24分)25、如图,直线y=-x+b与两坐标轴分别相交于A;B两点;以OB为直径作⊙C交AB于D,DC的延长线交x轴于E.

(1)写出A、B两点的坐标(用含b的代数式表示);并求tanA的值;

(2)如果AD=4,求b的值;

(3)求证:△EOD∽△EDA,并在(2)的情形下,求出点E的坐标.26、已知二次函数y=x2-2mx-m2(m≠0)的图象与x轴交于点A;B,它的顶点在以AB为直径的圆上.

(1)证明:A;B是x轴上两个不同的交点;

(2)求二次函数的解析式;

(3)设以AB为直径的圆与y轴交于点C,D,求弦CD的长.27、(2012•镇海区校级自主招生)如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C三点的拋物线对应的函数关系式是____.28、如图;Rt△ABC的两条直角边AC=3,BC=4,点P是边BC上的一动点(P不与B重合),以P为圆心作⊙P与BA相切于点M.设CP=x,⊙P的半径为y.

(1)求证:△BPM∽△BAC;

(2)求y与x的函数关系式;并确定当x在什么范围内取值时,⊙P与AC所在直线相离;

(3)当点P从点C向点B移动时;是否存在这样的⊙P,使得它与△ABC的外接圆相内切?若存在,求出x;y的值;若不存在,请说明理由.

参考答案一、选择题(共6题,共12分)1、B【分析】【解析】

试题分析:当时,z;

当时,所以,“”是“”的必要而不充分条件;选B。

考点:充要条件的概念。

点评:简单题,涉及充要条件问题,可以利用“定义法、等价关系法、集合关系法”加以判断。【解析】【答案】B2、C【分析】【解析】

考点:直线的图象特征与倾斜角;斜率的关系.

专题:计算题.

分析:由直线的方程求出斜率;再由斜率的值及倾斜角的范围求出倾斜角的值.

解答:解:∵直线l的方程为y=x-6;∴斜率为1,又倾斜角α∈[0,π),∴α=45°.

故选:C.

点评:本题主要考查直线的倾斜角和斜率的关系,求出直线的斜率,是解题的关键,属于基础题.【解析】【答案】C3、B【分析】【解析】略【解析】【答案】B4、A【分析】【解答】解:∵=(1,﹣2),=(m;1);

∴+=(m+1,﹣1),2﹣=(2﹣m;﹣5);

又向量+与2﹣平行;

∴﹣5(m+1)+(2﹣m)=0,解得m=﹣.

∴=(-1);

则•=1×(﹣)+(﹣2)×1=-.

故选:A.

【分析】由已知向量的坐标利用向量坐标的加减法运算求得向量+与2﹣的坐标,再由向量共线的坐标表示列式求得m值,代入数量积的坐标运算得答案.5、B【分析】【解答】解:f(x)=2x,(x≠1),那么:g(x)=.

∵2x﹣1﹣1>﹣1;

根据反比例的性质;可知;

g(x)的值域为(﹣∞;﹣1)∪(0,+∞).

故选B.

【分析】根据f(x)=2x,(x≠1),求出g(x)的解析式,根据反比例的性质求解即可.6、D【分析】【解答】解:对于A,y=﹣x2是定义域R上的偶函数,但在(0,+∞)上单调递减,不满足题意;对于B,y=2﹣|x|是定义域R上的偶函数;但在(0,+∞)上单调递减,不满足题意;

对于C,y=||是定义域(﹣∞;0)∪(0,+∞)上的偶函数,在(0,+∞)上单调递减,不满足题意;

对于D;y=lg|x|是定义域(﹣∞,0)∪(0,+∞)上的偶函数,且在(0,+∞)上单调递增,满足题意.

故选:D.

【分析】根据基本初等函数的单调性奇偶性,逐一分析选项中四个函数在(0,+∞)上的单调性和奇偶性,逐一比较后可得答案.二、填空题(共5题,共10分)7、略

【分析】试题分析:法一:首先看函数的定义域要求即当随的增大而减小,当随的增大而减小,函数的单调减区间为法二:由于函数的图象是把函数的图象沿轴向右平移1个单位得到的,因此可画出函数图象观察出减区间考点:1.判断函数的单调性;2.求函数的单调区间;【解析】【答案】8、略

【分析】

设x<0;则-x>0

∴f(-x)=(-x)2-2(-x)-3=x2+2x-3

又∵f(x)为奇函数。

∴f(x)=-f(-x)=-(x2+2x-3)=-x2-2x+3

故答案为:-x2-2x+3

【解析】【答案】首先设x<0;然后知-x>0,这样就可以用x>0时的解析式,可写出f(-x)的解析式,最后用奇函数条件求出f(x)的解析式.

9、略

【分析】根据复合函数的单调性的判断方法可知在区间上是增函数,所以解之得【解析】【答案】10、略

【分析】【解析】略【解析】【答案】11、略

【分析】【解析】

试题分析:如图所示取BC中点E;连接AE,DE;

易得与平面所成角为设正三棱柱棱长为2,则等边三角形ABC,边上的中线直角三角形中

考点:直线与平面所成的角.【解析】【答案】三、证明题(共9题,共18分)12、略

【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.

(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】

证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;

则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.

(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.13、略

【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四点共圆.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.14、略

【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE

OA=OE=>∠OAE=∠OEA

DE切圆O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

⇒OE∥AD

=>E为的中点.

(2)解:连CE;则∠AEC=90°,设圆O的半径为x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圆O于E=>△FCE∽△FEA

∴,

即DE•EF=AD•CF

DE•EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC•FA=3x(3+2)=15

∴EF=15、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.16、略

【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;

(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

则=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四点共圆;

∴∠CFD=∠CAD.

(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四点共圆;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.17、略

【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;

(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;

则CE=AC•sin(α+β)=bsin(α+β);

∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根据题意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB•ACsin(α+β)=BD•AD+CD•AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.18、略

【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;

(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F为AC中点;

∴cosC==.

答:cosC的值是.

(3)BF过圆心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.19、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.20、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.四、解答题(共3题,共12分)21、略

【分析】试题分析:(1)由已知得不等式是一个一元二次不等式,用因式分解方法可写出此不等式的解集;(2)因为由二次函数的零点式可将函数的解析式写成:从而当时,恒成立等价于在恒成立,通过分离参数a,将恒成立问题转化为函数的最值问题加以解决;或结合二次函数的图象,通过分类讨论求得字母a的取值范围.试题解析:(1)当时,即或.(2)因为所以在恒成立,即在恒成立,而当且仅当即时取到等号.,所以即.所以的最小值是(2)或【解析】

在恒成立,即在恒成立.令.①当时,在上恒成立,符合;②当时,易知在上恒成立,符合;③当时,则所以.综上所述,所以的最小值是.考点:1.一元二次不等式;2.不等式的恒成立.【解析】【答案】(1)或(2)22、略

【分析】【解析】本题考查函数值的求法;解题时要认真审题,注意挖掘题设的中的隐含条件,注意性质的灵活运用.

(1)取x1=x2=0可得f(0)≥f(0)+f(0)⇒f(0)≤0;由此可求出f(0)的值.

(2)g(x)=2x-1在[0,1]满足条件①g(x)≥0,也满足条件②g(1)=1.若x1≥0,x2≥0,x1+x2≤1;满足条件③,收此知故g(x)理想函数.

(3)由条件③知,任给m、n∈[0,1],当m<n时,由m<n知n-m∈[0,1],f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m).由此能够推导出f(x0)=x0【解析】【答案】(1).(2)理想函数.23、略

【分析】

(1)

当AB

为直径时;过AB

的圆的半径最小,此时,求得圆心坐标和半径,可得圆的方程.

(2)

设圆的方程为:(x鈭�a)2+(y鈭�b)2=r2.

由题意利用待定系数法求得abr2

的值;可得圆心在直线2x鈭�y鈭�4=0

上的圆的方程.

本题主要考查求圆的标准方程的方法,属于基础题.【解析】解:(1)

当AB

为直径时;过AB

的圆的半径最小,从而周长最小.

即AB

中点(0,1)

为圆心,半径r=12|AB|=10.

则圆的方程为:x2+(y鈭�1)2=10

(2)

设圆的方程为:(x鈭�a)2+(y鈭�b)2=r2

则由题意可得{(1鈭�a)2+(鈭�2鈭�b)2=r2(鈭�1鈭�a)2+(4鈭�b)2=r22a鈭�b鈭�4=0

求得{a=3b=2r2=20

可得圆的方程为:(x鈭�3)2+(y鈭�2)2=20

.五、作图题(共1题,共10分)24、解:如图所示:

【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.六、综合题(共4题,共24分)25、略

【分析】【分析】(1)在解析式中分别令x=0与y=0;即可求得直线与y轴,x轴的交点坐标,即可求得OA,OB的长度,进而求得正切值;

(2)利用切割线定理,可以得到OA2=AD•AB,据此即可得到一个关于b的方程,从而求得b的值;

(3)利用两角对应相等的两个三角形相似即可证得两个三角形相似.【解析】【解答】解:(1)∵当x=0时,y=b,当y=0时,x=2b;

∴A(2b,0),B(0,b)

∴tanA===;

(2)AB===b

由OA2=AD•AB,得(2b)2=4•b,解得b=5;

(3)∵OB是直径;

∴∠BDO=90°;

则∠ODA=90°

∴∠EOC=∠ODA=90°;

又∵OC=CD

∴∠COD=∠CDO

∴∠COD+∠EOC=∠CDO+∠ODA

∴∠EOD=∠EDA

又∵∠DEA=∠OED

∴△EOD∽△EDA

D点作y轴的垂线交y轴于H;DF⊥AE与F.

∵A(2b,0),B(0,b)

∴OA=10;OB=5.

∴AB=5;

∵DF∥OB

∴===;

∴AF=OA=8;

∴OF=OA-AF=10-8=2;

∴DH=OF=2;

∵Rt△BHD中,BD2=BH2+HD2

∴BH==1;

∴CH=-1=;

∵DH∥OE;

∴=

∴OE=.

∴E的坐标是:(-,0).26、略

【分析】【分析】(1)求出根的判别式;然后根据根的判别式大于0即可判断与x轴有两个交点;

(2)利用根与系数的关系求出AB的长度;也就是圆的直径,根据顶点公式求出顶点的坐标得到圆的半径,然后根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论