版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
热点08解直角三角形及其应用中考数学中《锐角三角函数及其应用》部分主要考向分为三类:一、特殊角的三角函数值相关运算(每年1道,6~8分)二、解直角三角形(每年1道,3分)三、解直角三角形的应用(每年1题,3~8分)中考数学中,对锐角三角函数的考察主要以特殊角的三角函数值及其有关计算、解直角三角形、解直角三角形的应用三个方面为主。其中,特殊角的三角函数值主要和实数相关概念放一起考察计算题,而解直角三角形及其各种应用则选择、填空、简答题都有出现,其中应用则偏向大题多些,难度一般中等或偏上,分值也比较可观,但对应考点掌握熟练,计算和审题上够小心了,一般不会失分。
考向一:特殊角的三角函数值的运算【题型1和实数概念结合的特殊角的三角函数值的运算】满分技巧特殊角的三角函数值表αsinαcosαtanα30°45°60°特殊角的三角函数值,可以直接记数值,也可以记定义,然后现退对应函数值,但显然,直接熟记对应数值会便捷很多。1.(2023•天津)的值等于()A.1 B. C. D.22.(2023•黄石)计算:(﹣)﹣2+(1﹣)0﹣2cos60°=.3.(2023•菏泽)计算:|﹣2|+2sin60°﹣20230=.4.(2023•内江)在△ABC中,∠A、∠B,∠C的对边分别为a、b、c,且满足a2+|c﹣10|+=12a﹣36,则sinB的值为.5.(2023•金华)计算:(﹣2023)0+﹣2sin30°+|﹣5|.6.(2023•西藏)计算:.考向二:解直角三角形【题型2利用已知信息求解对应角的三角函数值】满分技巧解直角三角形口诀“直乘斜除,对正临余”——求直角三角形的直角边,多用乘法;求斜边,多用除法。求已知角的对边,多用正弦或正切值;求已知角的临边,多用余弦值。常见辅助线:做垂线1.(2023•攀枝花)△ABC中,∠A、∠B、∠C的对边分别为a、b、c.已知a=6,b=8,c=10,则cos∠A的值为()A. B. C. D.2.(2023•陕西)如图,在6×7的网格中,每个小正方形的边长均为1.若点A,B,C都在格点上,则sinB的值为()A. B. C. D.3.(2023•常州)如图,在Rt△ABC中,∠A=90°,点D在边AB上,连接CD.若BD=CD,=,则tanB=.【题型3利用三角函数值求解几何图形的线段】满分技巧此类计算更多的是注意审题,因为题目中可能会要求精确位数,或者保留几位有效数字,这时候要注意,一般计算到最后一步才带入参考数据计算,然后四舍五入。1.(2023•西宁)在Rt△ABC中,∠ACB=90°,AB=12,∠A=42°,则BC的长约为.(结果精确到0.1.参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)2.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是cm(结果精确到0.1cm,参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).3.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为;点D的坐标为.考向三:解直角三角形的应用【题型4坡度坡角问题】满分技巧坡度坡角的意义:坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作坡角:坡面与水平面的夹角叫做坡角,记作α,坡度越大,坡角越大,坡面越陡1.(2023•深圳)爬坡时坡面与水平面夹角为α,则每爬1m耗能(1.025﹣cosα)J,若某人爬了1000m,该坡角为30°,则他耗能()(参考数据:≈1.732,≈1.414)A.58J B.159J C.1025J D.1732J2.(2023•长春)学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB到地面,如图所示.已知彩旗绳与地面形成25°角(即∠BAC=25°),彩旗绳固定在地面的位置与图书馆相距32米(即AC=32米),则彩旗绳AB的长度为()A.32sin25°米 B.32cos25°米C.米 D.米3.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备厢,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备厢后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)【题型5仰角俯角问题】满分技巧仰角俯角的意义:仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角1.(2023•衢州)如图,一款可调节的笔记本电脑支架放置在水平桌面上,调节杆,AB=b,AB的最大仰角为α.当∠C=45°时,则点A到桌面的最大高度是()A. B. C.a+bcosα D.a+bsinα2.(2023•日照)日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,则灯塔的高度AD大约是()(结果精确到1m,参考数据:≈1.41,≈1.73)A.31m B.36m C.42m D.53m3.(2023•浙江)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【题型6方向角问题】满分技巧方向角遵循——上北下南,左西右东。因为这类题目常和特殊角结合,故作辅助线时,谨记一个原则:不能破坏已有的特殊角。1.(2023•眉山)一渔船在海上A处测得灯塔C在它的北偏东60°方向,渔船向正东方向航行12海里到达点B处,测得灯塔C在它的北偏东45°方向,若渔船继续向正东方向航行,则渔船与灯塔C的最短距离是海里.2.(2023•丹东)一艘轮船由西向东航行,行驶到A岛时,测得灯塔B在它北偏东31°方向上,继续向东航行10nmile到达C港,此时测得灯塔B在它北偏西61°方向上,求轮船在航行过程中与灯塔B的最短距离.(结果精确到0.1nmile)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin61°≈0.87,cos61°≈0.48,tan61°≈1.80).3.(2023•重庆)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)重难通关练(建议用时:30分钟)1.(2023•无锡)cos60°的值为()A. B. C. D.2.(2023•南充)如图,小兵同学从A处出发向正东方向走x米到达B处,再向正北方向走到C处,已知∠BAC=α,则A,C两处相距()A.米 B.米 C.x•sinα米 D.x•cosα米3.(2023•十堰)如图所示,有一天桥高AB为5米,BC是通向天桥的斜坡,∠ACB=45°,市政部门启动“陡改缓”工程,决定将斜坡的底端C延伸到D处,使∠D=30°,则CD的长度约为()(参考数据:≈1.414,≈1.732)A.1.59米 B.2.07米 C.3.55米 D.3.66米4.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5 B.4 C.3 D.25.(2023•淄博)勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接EG,DG.若正方形ABCD与EFGH的边长之比为:1,则sin∠DGE等于()A. B. C. D.6.(2023•南通)如图,从航拍无人机A看一栋楼顶部B的仰角α为30°,看这栋楼底部C的俯角β为60°,无人机与楼的水平距离为120m,则这栋楼的高度为()A. B. C. D.7.(2023•益阳)如图,在平面直角坐标系xOy中,有三点A(0,1),B(4,1),C(5,6),则sin∠BAC=()A. B. C. D.8.(2023•自贡)如图,分别经过原点O和点A(4,0)的动直线a,b夹角∠OBA=30°,点M是OB中点,连接AM,则sin∠OAM的最大值是()A. B. C. D.9.(2023•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B、C三点都在格点上,则sin∠ABC=.10.如图,焊接一个钢架,包括底角为37°的等腰三角形外框和3m高的支柱,则共需钢材约m(结果取整数).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)11.综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为45°,尚美楼顶部F的俯角为30°,已知博雅楼高度CE为15米,则尚美楼高度DF为米.(结果保留根号)12.为发展城乡经济,建设美丽乡村,某乡对A地和B地之间的一处垃圾填埋场进行改造,把原来A地去往B地需要绕行到C地的路线,改造成可以直线通行的公路AB.如图,经勘测,AC=6千米,∠CAB=60°,∠CBA=37°,则改造后公路AB的长是千米(精确到0.1千米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73).13.某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是.14.(2023•泰安)在一次综合实践活动中,某学校数学兴趣小组对一电视发射塔的高度进行了测量.如图,在塔前C处,测得该塔顶端B的仰角为50°,后退60m(CD=60m)到D处有一平台,在高2m(DE=2m)的平台上的E处,测得B的仰角为26.6°.则该电视发射塔的高度AB为m.(精确到1m.参考数据:tan50°≈1.2,tan26.6°≈0.5)15.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.16.(2023•内蒙古)计算:|﹣2|+(π﹣2023)0+(﹣)﹣2﹣2cos60°.17.(2023•绥化)如图,直线MN和EF为河的两岸,且MN∥EF,为了测量河两岸之间的距离,某同学在河岸FE的B点测得∠CBE=30°,从B点沿河岸FE的方向走40米到达D点,测得∠CDE=45°.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D点继续沿DE的方向走(12+12)米到达P点.求tan∠CPE的值.18.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.(1)求∠GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)19.(2023•甘孜州)“科技改变生活”,小王是一名摄影爱好者,新入手一台无人机用于航拍.在一次航拍时,数据显示,从无人机A看建筑物顶部B的仰角为45°,看底部C的俯角为60°,无人机A到该建筑物BC的水平距离AD为10米,求该建筑物BC的高度.(结果精确到0.1米;参考数据:,)20.(2023•苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cos54°≈0.6)培优争分练(建议用时:30分钟)1.(2024•秦都区校级一模)在Rt△ABC中,AC=8,BC=6,则cosA的值等于()A. B. C.或 D.或2.在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是()A.15° B.45° C.30° D.60°3.(2024•界首市校级一模)如图,滑雪场有一坡角为18°的滑雪道,滑雪道AC长为150米,则滑雪道的坡顶到坡底的竖直高度AB的长为()A.150tan18°米 B.150sin18°米C.米 D.米4.(2024•道里区模拟)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A、B、D三点在同一直线上,若AB=(8+8)米,则这棵树CD的高度是()A.米 B.米 C.米 D.米5.如图,在Rt△ABC中,D为BC的中点,若AD=CD,AB=BD,则tan∠C的值为()A. B.2 C. D.6.(2024•平城区一模)如图是椭圆机在使用过程中某时刻的侧面示意图,已知手柄AD⊥滚轮连杆AB,且AD=20cm,AB=160cm,连杆AB与底座BC的夹角为60°,则该椭圆机的机身高度(点D到地面的距离)为()A. B.C. D.7.如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,当跷跷板的一端B着地时,跷跷板AB与地面MN的夹角为20°,测得AB=1.6m,则OC的长为()A. B. C.0.8sin20° D.0.8cos20°8.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是.9.(2024•平城区一模)数学实践小组要测量某路段上一处无标识的车辆限高杆MN的高度AB,如图,他们先用测倾器在C处测得点A的仰角∠AEG=30°,然后在距离C处2米的D处测得点A的仰角∠AFG=45°,已知测倾器的高度为1.6米,C、D、B在一条直线上,则车辆限高杆AB的高度为米.(结果保留根号)10.(2024•秦都区校级一模)计算:(1)sin230°+2sin60°+tan45°+cos230°;(2)﹣2sin45°+2cos60°+|1﹣|+()﹣1.11.(2024•秦都区校级一模)如图,某中学依山而建,校门A处有一坡度i=5:12的斜坡AB,长度为13米,在坡顶B处看教学楼CF的楼顶C的仰角∠CBF=45°,离B点4米远的E处有一个花台,在E处仰望C的仰角是∠CEF=60°,CF的延长线交校门处的水平面于点D.(1)求坡顶B的高度;(2)求楼顶C的高度CD.12.(2024•河南一模)我国的无人机水平位居世界前列,“大疆”无人机更是风靡海外.小华在一条东西走向的笔直宽阔的沿江大道上玩无人机航拍.已知小华身高AB为1.8m,无人机匀速飞行的速度是2m/s,当小华在B处时,测得无人机在C处的仰角为45°;3s后,小华沿正东方向前进3m到达E处,无人机沿正西方向匀速飞行到达F处,此时测得无人机在F处的仰角为72.6°,已知无人机的飞行路线CF平行于地面(直线l).求无人机在C处时距离地面的高度.(结果精确到0.1m,参考数据:sin72.6°≈0.95,cos72.6°≈0.30,tan72.6°≈3.20)13.(2024•沈丘县一模)第31届世界大学生运动会于2023年7月28日在成都举行,主火炬塔位于东安湖体育公园,亮灯之夜,塔身通体透亮,10余道象征太阳光芒的螺旋线全部点亮,璀璨绚丽,流光溢彩(如图1).小杰同学想要通过测量及计算了解火炬塔CD的大致高度,当他步行至点A处,测得此时塔顶C的仰角为42°,再步行20米至点B处,测得此时塔顶C的仰角为65°(如图2所示,点A,B,D在同一条直线上),请帮小杰计算火炬塔CD的高.(sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,结果保留整数)14.数学兴趣小组的成员在观察点A测得观察点B在A的正北方向,古树C在A的东北方向,AC=50m;在B处测得C在B的南偏东63.5°的方向上,已知D在C正北方向上,即CD∥AB,求古树C,D之间的距离.(结果精确到0.1m,参考数据:≈1.41,sin63.5°≈0.89,cos63.5°≈0.45,tan63.5°≈2.00,sin53°≈0.80,cos53°≈0.60,tan53°≈1.32)15.(2024•遂平县一模)宝岩寺塔始建于北宋时期,已有近千年的历史,为仿木结构楼阁式七级砖塔,整体呈奶黄色,平面呈六角形,塔角雕饰龙首,塔身浮雕壁画,如今已经成为驻马店西平县的地标性建筑.某实践探究小组想测得宝岩寺塔的高度,数据勘测组通过勘测,得到了如下记录表.实践探究活动记录表活动内容:宝岩寺塔的高度活动日期:2024年3月12日成员组长:xx组员:xxxxxxxxxxxx工具:测角仪,皮尺等测量示意图说明:塔高无法直接测量,数据勘测组在A,B两处通过测角仪可测得∠DAC,∠DBC的度数,以及使用皮尺测得AB的长度.测量数据角的度数∠DBC=53°∠DAC=30°∠BCD=90°边的长度AB=28.8米计算数据求塔高(CD)(结果精确到0.1m.参考数据:≈1.73,sin,cos53°≈,)特殊说明(点A,B,C,D在同一平面内,且点A,B,C在同一水平线上)16.(2024•鹿城区校级一模)【问题背景】一旗杆直立(与水平线垂直)在不平坦的地面上(如图1).两个学习小组为了测量旗杆的高度,准备利用附近的小山坡进行测量估算.【问题探究】如图2,在坡角点C处测得旗杆顶点A的仰角∠ACE的正切值为2,山坡上点D处测得顶点A的仰角∠ADG的正切值为.斜坡CD的坡比为,两观测点CD的距离为15m.学习小组成员对问题进行如下分解,请探索并完成任务.任务1:计算C,D两点的垂直高度差.任务2:求顶点A到水平地面的垂直高度.【问题解决】为了计算得到旗杆AB的高度,两个小组在共同解决任务1和2后,采取了不同的方案:小组一:在坡角点C处测得旗杆底部点B的仰角∠BCE的正切值为;小组二:在山坡上点D处测得旗杆底部点B的俯角∠GDB的正切值为.任务3请选择其中一个小组的方案计算旗杆AB的高度.
热点08解直角三角形及其应用考向一:特殊角的三角函数值的运算【题型1和实数概念结合的特殊角的三角函数值的运算】满分技巧特殊角的三角函数值表αsinαcosαtanα30°45°60°特殊角的三角函数值,可以直接记数值,也可以记定义,然后现退对应函数值,但显然,直接熟记对应数值会便捷很多。1.(2023•天津)的值等于()A.1 B. C. D.2【分析】根据特殊锐角的三角函数值及二次根式的加法法则计算即可.【解答】解:原式=+=,故选:B.2.(2023•黄石)计算:(﹣)﹣2+(1﹣)0﹣2cos60°=9.【分析】先计算零次幂、负整数指数幂和特殊角的三角函数值,再计算乘法,最后计算加减.【解答】解:(﹣)﹣2+(1﹣)0﹣2cos60°=9+1﹣2×=9+1﹣1=9,故答案为:9.3.(2023•菏泽)计算:|﹣2|+2sin60°﹣20230=.【分析】首先计算零指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|﹣2|+2sin60°﹣20230=2﹣+2×﹣1=2﹣+﹣1=1.故答案为:1.4.(2023•内江)在△ABC中,∠A、∠B,∠C的对边分别为a、b、c,且满足a2+|c﹣10|+=12a﹣36,则sinB的值为.【分析】直接利用非负数的性质得出a,b,c的值,再利用锐角三角函数关系得出答案.【解答】解:∵a2+|c﹣10|+=12a﹣36,∴(a﹣6)2+|c﹣10|+=0,∴a﹣6=0,c﹣10=0,b﹣8=0,∴a=6,c=10,b=8,∵62+82=102,∴△ABC是直角三角形,∠C=90°,∵△ABC中,∠A、∠B,∠C的对边分别为a、b、c,∴sinB===.故答案为:.5.(2023•金华)计算:(﹣2023)0+﹣2sin30°+|﹣5|.【分析】先计算零次幂、化简二次根式,再代入特殊值的函数值算乘法并化简绝对值,最后算加减得结论.【解答】解:(﹣2023)0+﹣2sin30°+|﹣5|=1+2﹣2×+5=1+2﹣1+5=7.6.(2023•西藏)计算:.【分析】利用负整数指数幂,特殊锐角的三角函数值,零指数幂,立方根的定义进行计算即可.【解答】解:原式=4+2×﹣1﹣3=4+﹣1﹣3=.考向二:解直角三角形【题型2利用已知信息求解对应角的三角函数值】满分技巧解直角三角形口诀“直乘斜除,对正临余”——求直角三角形的直角边,多用乘法;求斜边,多用除法。求已知角的对边,多用正弦或正切值;求已知角的临边,多用余弦值。常见辅助线:做垂线1.(2023•攀枝花)△ABC中,∠A、∠B、∠C的对边分别为a、b、c.已知a=6,b=8,c=10,则cos∠A的值为()A. B. C. D.【分析】先利用勾股定理的逆定理判断三角形的形状,再利用三角形的边角间关系得结论.【解答】解:在△ABC中,∵a=6,b=8,c=10,a2+b2=62+82=36+64=100,c2=100.∴a2+b2=c2.∴△ABC是直角三角形.∴cosA===.故选:C.2.(2023•陕西)如图,在6×7的网格中,每个小正方形的边长均为1.若点A,B,C都在格点上,则sinB的值为()A. B. C. D.【分析】连接AD,得到∠ADB=90°,由勾股定理求出AD=2,AB=,即可求出sinB==.【解答】解:连接AD,则∠ADB=90°,∵AD==2,AB==,∴sinB===,故选:A.3.(2023•常州)如图,在Rt△ABC中,∠A=90°,点D在边AB上,连接CD.若BD=CD,=,则tanB=.【分析】设AD=t,根据已知表示出AC=2t,AB=AD+BD=4t,即可得tanB===.【解答】解:设AD=t,∵BD=CD,=,∴BD=CD=3t,∴AC==2t,AB=AD+BD=4t,∴tanB===,故答案为:.【题型3利用三角函数值求解几何图形的线段】满分技巧此类计算更多的是注意审题,因为题目中可能会要求精确位数,或者保留几位有效数字,这时候要注意,一般计算到最后一步才带入参考数据计算,然后四舍五入。1.(2023•西宁)在Rt△ABC中,∠ACB=90°,AB=12,∠A=42°,则BC的长约为8.0.(结果精确到0.1.参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【分析】根据正弦定义求解即可.【解答】解:如图,∵∠ACB=90°,∴sinA=,∵AB=12,∠A=42°,sin42°≈0.67,∴BC=12×0.67≈8.0,故答案为:8.0.2.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是cm(结果精确到0.1cm,参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).【分析】过点B作BD⊥OA于D,过点C作CE⊥OA于E,根据等腰直角三角形的性质可得CE=2,再通过解直角三角形可求得OE的长,进而可求解.【解答】解:如图,过点B作BD⊥OA于D,过点C作CE⊥OA于E,在△BOD中,∠BDO=90°,∠DOB=45°,∴CE=BD=2cm,在△OCE中,∠COE=37°,∠CEO=90°,∴tan37°=,∴OE=2.7cm,即OC与尺上沿的交点C在尺上的读数是2.7cm.故答案为:2.7.3.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为;点D的坐标为.【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC=,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.考向三:解直角三角形的应用【题型4坡度坡角问题】满分技巧坡度坡角的意义:坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作坡角:坡面与水平面的夹角叫做坡角,记作α,坡度越大,坡角越大,坡面越陡1.(2023•深圳)爬坡时坡面与水平面夹角为α,则每爬1m耗能(1.025﹣cosα)J,若某人爬了1000m,该坡角为30°,则他耗能()(参考数据:≈1.732,≈1.414)A.58J B.159J C.1025J D.1732J【分析】根据题意可得:他耗能=1000×(1.025﹣cos30°),进行计算即可解答.【解答】解:由题意得:某人爬了1000m,该坡角为30°,则他耗能=1000×(1.025﹣cos30°)=1000×(1.025﹣)≈159(J),故选:B.2.(2023•长春)学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳AB到地面,如图所示.已知彩旗绳与地面形成25°角(即∠BAC=25°),彩旗绳固定在地面的位置与图书馆相距32米(即AC=32米),则彩旗绳AB的长度为()A.32sin25°米 B.32cos25°米C.米 D.米【分析】根据直角三角形的边角关系进行解答即可.【解答】解:如图,由题意得,AC=32m,∠A=25°,在Rt△ABC中,∵cosA=,∴AB==(m),故选:D.3.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备厢,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备厢后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)【分析】(1)作B′E⊥AD,垂足为点E,先求出B′E的长,再求出B′E+AO的长即可;(2)过C′作C′F⊥B′E,垂足为点F,先求得∠AB′E=63°,再得到∠C′B′F=∠AB′C′﹣∠AB′E=60°,再求得B′F=B′C′•cos60°=0.3m,从而得出C′到地面的距离为2.15﹣0.3=1.85(m),最后比较即可.【解答】解:(1)如图,作B′E⊥AD,垂足为点E,在Rt△AB′E中,∵∠B′AD=27°,AB′=AB=1m,∴sin27°=,∴B′E=AB′sin27°≈1×0.454=0.454m,∵平行线间的距离处处相等,∴B′E+AO=0.454+1.7=2.154≈2.15m,答:车后盖最高点B′到地面的距离为2.15m.(2)没有危险,理由如下:如图,过C′作C′F⊥B′E,垂足为点F,∵∠B′AD=27°,∠B′EA=90°,∴∠AB′E=63°,∵∠AB′C′=∠ABC=123°,∴∠C′B′F=∠AB′C′﹣∠AB′E=60°,在Rt△B′FC′中,B′C′=BC=0.6m,∴B′F=B′C′•cos60°=0.3m.∵平行线间的距离处处相等,∴C′到地面的距离为2.15﹣0.3=1.85m.∵1.85>1.8,∴没有危险.【题型5仰角俯角问题】满分技巧仰角俯角的意义:仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角1.(2023•衢州)如图,一款可调节的笔记本电脑支架放置在水平桌面上,调节杆,AB=b,AB的最大仰角为α.当∠C=45°时,则点A到桌面的最大高度是()A. B. C.a+bcosα D.a+bsinα【分析】过点A作AF⊥BE于F,过点B作BG⊥CD于G,利用解直角三角形可得AF=bsinα,BG=a,根据点A到桌面的最大高度=BG+AF,即可求得答案【解答】解:如图,过点A作AF⊥BE于F,过点B作BG⊥CD于G,在Rt△ABF中,AF=AB•sinα=bsinα,在Rt△BCG中,BG=BC•sin45°=a×=a,∴点A到桌面的最大高度=BG+AF=a+bsinα,故选:D.2.(2023•日照)日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,则灯塔的高度AD大约是()(结果精确到1m,参考数据:≈1.41,≈1.73)A.31m B.36m C.42m D.53m【分析】根据题意可得:AD⊥BD,然后设CD=xm,则BD=(x+15.3)m,在Rt△ABD中,利用锐角三角函数的定义求出AD的长,再在Rt△ACD中,利用锐角三角函数的定义求出AD的长,从而列出关于x的方程,进行计算即可解答.【解答】解:由题意得:AD⊥BD,设CD=xm,∵BC=15.3m,∴BD=BC+CD=(x+15.3)m,在Rt△ABD中,∠ABD=45°,∴AD=BD•tan45°=(x+15.3)m,在Rt△ACD中,∠ACD=60°,∴AD=CD•tan60°=x(m),∴x=(x+15.3),解得:x≈21.0,∴AD=x+15.3≈36(m),∴灯塔的高度AD大约是36m,故选:B.3.(2023•浙江)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【分析】(1)过C作OB的垂线分别交仰角、俯角线于点E,D,交水平线于点F,在Rt△AEF中,根据三角函数的定义得到EF=AF•tan15°≈130×0.27=35.1(cm),根据全等三角形的性质得到结论;(2)如图2,过B作OB的垂线分别交仰角、俯角线于M.N.交水平线于P,根据三角函数的定义得到MP=AP•tan20°≈150×0.36=54.0(cm),根据全等三角形的性质得到PN=MP=54.0cm,于是得到结论.【解答】解:(1)过C作OB的垂线分别交仰角、俯角线于点E,D,交水平线于点F,在Rt△AEF中,tan∠EAF=,∴EF=AF•tan15°≈130×0.27=35.1(cm),∵AF=AF,∠EAF=∠DAF,∠AFE=∠AFD=90°,∴△ADF≌△AEF(ASA),∴EF=DF=35.1cm,∴CE=160+35.1=195.1(cm),∴小杜最少需要下蹲208﹣195.1=12.9厘米才能被识别;(2)如图2,过B作OB的垂线分别交仰角、俯角线于M.N.交水平线于P,在Rt△APM中,tan∠MAP=,∴MP=AP•tan20°≈150×0.36=54.0(cm),∵AP=AP,∠MAP=∠NAP,∠APM=∠APN=90°,∴△AMP≌△ANP(ASA),∴PN=MP=54.0cm,∴BN=160﹣54.0=106.0(cm),∴小若踮起脚尖后头顶的高度为120+3=123(cm),∴小若头顶超出点N的高度为:123﹣106.0=17.0(cm)>15cm,∴踮起脚尖小若能被识别.【题型6方向角问题】满分技巧方向角遵循——上北下南,左西右东。因为这类题目常和特殊角结合,故作辅助线时,谨记一个原则:不能破坏已有的特殊角。1.(2023•眉山)一渔船在海上A处测得灯塔C在它的北偏东60°方向,渔船向正东方向航行12海里到达点B处,测得灯塔C在它的北偏东45°方向,若渔船继续向正东方向航行,则渔船与灯塔C的最短距离是海里.【分析】过点C作CH⊥AB于H.证得BH=CH,在Rt△ACH中,解直角三角形求出CH的值即可.【解答】解:过点C作CH⊥AB于H.∵∠DAC=60°,∠CBE=45°,∴∠CAH=90°﹣∠CAD=30°,∠CBH=90°﹣∠CBE=45°,∴∠BCH=90°﹣45°=45°=∠CBH,∴BH=CH,在Rt△ACH中,∠CAH=30°,AH=AB+BH=12+CH,tan30°=,∴CH=(12+CH),解得CH=6(+1).答:渔船与灯塔C的最短距离是6(+1)海里.故答案为:6+6.2.(2023•丹东)一艘轮船由西向东航行,行驶到A岛时,测得灯塔B在它北偏东31°方向上,继续向东航行10nmile到达C港,此时测得灯塔B在它北偏西61°方向上,求轮船在航行过程中与灯塔B的最短距离.(结果精确到0.1nmile)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin61°≈0.87,cos61°≈0.48,tan61°≈1.80).【分析】过B作BD⊥AC于D,则∠ADC=∠ADB=90°,设BD=xnmile,解直角三角形即可得到结论.【解答】解:过B作BD⊥AC于D,则∠BDC=∠ADB=90°,∵∠ABD=31°,∠CBD=61°,设BD=xnmile,∴AD=BD•tan31°,CD=BD•tan61°,∵AC=10nmile,∴x•tan31°+x•tan61°=x(0.60+1.80)=10,∴x=BD≈4.2nmile,答:轮船在航行过程中与灯塔B的最短距离约为4.2nmile.3.(2023•重庆)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)【分析】(1)过点C作CD⊥AB于点D,在Rt△ACD中,解直角三角形求出AD,CD.在Rt△BCD中,解直角三角形即可求出BC;(2)求出AD,BD,进而求出AB,根据速度公式即可得到结论.【解答】解:(1)过点C作CD⊥AB于点D,在Rt△ACD中,∠ACD=60°,AC=3600米,cos60°=,sin60°=,∴AD=3600×=1800(米),CD=×3600=1800(米).在Rt△BCD中,∠BCD=45°,∴∠B=45°=∠BCD,∴BD=CD=1800(米),∴BC==1800≈1800×1.414≈2545(米).答:B养殖场与灯塔C的距离约为2545米;(2)AB=AD+BD=1800+1800≈1800×1.732+1800≈4917.6(米),600×9=5400(米),∵5400米>4917.6米,∴能在9分钟内到达B处.重难通关练(建议用时:30分钟)1.(2023•无锡)cos60°的值为()A. B. C. D.【分析】根据特殊角的三角函数值求解.【解答】解:cos60°=.故选:B.2.(2023•南充)如图,小兵同学从A处出发向正东方向走x米到达B处,再向正北方向走到C处,已知∠BAC=α,则A,C两处相距()A.米 B.米 C.x•sinα米 D.x•cosα米【分析】根据题意可得:BC⊥AB,然后在Rt△ABC中,利用锐角三角函数的定义求出AC的长,即可解答.【解答】解:由题意得:BC⊥AB,在Rt△ABC中,∠CAB=α,AB=x米,∴AC==(米),∴A,C两处相距米,故选:B.3.(2023•十堰)如图所示,有一天桥高AB为5米,BC是通向天桥的斜坡,∠ACB=45°,市政部门启动“陡改缓”工程,决定将斜坡的底端C延伸到D处,使∠D=30°,则CD的长度约为()(参考数据:≈1.414,≈1.732)A.1.59米 B.2.07米 C.3.55米 D.3.66米【分析】由∠BAC=90°,∠ACB=45°,得∠ABC=∠ACB=45°,则AC=AB=5米,由∠BAD=90°,∠D=30°,得∠ABD=60°,则=tan60°=,所以AD=AB,则CD=AD﹣AC=AB﹣AC≈3.66米,于是得到问题的答案.【解答】解:在Rt△ABC中,∠BAC=90°,∠ACB=45°,∴∠ABC=∠ACB=45°,∴AC=AB=5米,在Rt△ABD中,∠BAD=90°,∠D=30°,∴∠ABD=60°,∴=tan∠ABD=tan60°=,∴AD=AB,∴CD=AD﹣AC=AB﹣AC≈1.732×5﹣5≈3.66(米),∴CD的长度约为3.66米,故选:D.4.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5 B.4 C.3 D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.5.(2023•淄博)勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接EG,DG.若正方形ABCD与EFGH的边长之比为:1,则sin∠DGE等于()A. B. C. D.【分析】由题意得:,解得:,进而求解.【解答】解:过点D作ND⊥GE交GE的延长线于点N,由题意知,两个正方形之间是4个相等的三角形,设△ABG的长直角边为a,短直角边为b,大正方形的边长为x,小正方形的边长为x,即ED=BG=HC=AF=b,AG=BH=CE=DF=a,EG=b,由题意得:,解得:,在△GDE中,EG=GH=b,则NE=ND=ED=b=x,EG=GH=(a﹣b)=x,则tan∠DGE==,则sin∠DGE=,故选:A.6.(2023•南通)如图,从航拍无人机A看一栋楼顶部B的仰角α为30°,看这栋楼底部C的俯角β为60°,无人机与楼的水平距离为120m,则这栋楼的高度为()A. B. C. D.【分析】过点A作AD⊥BC,垂足为D,根据题意可得:AD=120m,然后分别在Rt△ABD和Rt△ACD中,利用锐角三角函数的定义求出BD和CD的长,最后利用线段的和差关系进行计算,即可解答.【解答】解:过点A作AD⊥BC,垂足为D,由题意得:AD=120m,在Rt△ABD中,∠BAD=30°,∴BD=AD•tan30°=120×=40(m),在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=120(m),∴BC=BD+CD=160(m),∴这栋楼的高度为160m,故选:B.7.(2023•益阳)如图,在平面直角坐标系xOy中,有三点A(0,1),B(4,1),C(5,6),则sin∠BAC=()A. B. C. D.【分析】过C作CD⊥AB交AB延长线于D,计算出CD、AC的长,根据正弦计算方法计算即可.【解答】解:过C作CD⊥AB交AB延长线于D,∵A(0,1),B(4,1),C(5,6),∴D(5,1),∴CD=6﹣1=5,AD=5,∴AC=5,∴sin∠BAC==,故选:C.8.(2023•自贡)如图,分别经过原点O和点A(4,0)的动直线a,b夹角∠OBA=30°,点M是OB中点,连接AM,则sin∠OAM的最大值是()A. B. C. D.【分析】作△AOB的外接圆⊙T,连接OT,TA,TB,取OT的中点K,连接KM.证明KM=TB=2,推出点M在以K为圆心,2为半径的圆上运动,当AM与⊙K相切时,∠OAM的值最大,此时sin∠OAM的值最大.【解答】解:如图,作△AOB的外接圆⊙T,连接OT,TA,TB,取OT的中点K,连接KM.∵∠ATO=2∠ABO=60°,TO=TA,∴△OAT是等边三角形,∵A(4,0),∴TO=TA=TB=4,∵OK=KT,OM=MB,∴KM=TB=2,∴点M在以K为圆心,2为半径的圆上运动,当AM与⊙K相切时,∠OAM的值最大,此时sin∠OAM的值最大,∵△OTA是等边三角形,OK=KT,∴AK⊥OT,∴AK===2,∵AM是切线,KM是半径,∴AM⊥KM,∴AM===2,过点M作ML⊥OA于点L,KR⊥OA于点R,MP⊥RK于点P.∵∠PML=∠AMK=90°,∴∠PMK=∠LMA,∵∠P=∠MLA=90°,∴△MPK∽△MLA,∴====,设PK=x,PM=y,则有ML=y,AL=x,∴y=+x①,y=3﹣x,解得,x=,y=,∴ML=y=,∴sin∠OAM===.故选:A.9.(2023•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A、B、C三点都在格点上,则sin∠ABC=.【分析】连接AC,根据勾股定理的逆定理得到∠ACB=90°,根据正弦的定义计算,得到答案.【解答】解:如图,连接AC,由勾股定理得:AB2=22+42=20,BC2=12+32=10,AC2=12+32=10,则BC2+AC2=AB2,∴∠ACB=90°,∴sin∠ABC===,故答案为:.10.如图,焊接一个钢架,包括底角为37°的等腰三角形外框和3m高的支柱,则共需钢材约m(结果取整数).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】根据等腰三角形的三线合一性质可得AD=BD=AB,然后在Rt△ACD中,利用锐角三角函数的定义求出AC,AD的长,从而求出AB的长,最后进行计算即可解答.【解答】解:∵CA=CB,CD⊥AB,∴AD=BD=AB,在Rt△ACD中,∠CAD=37°,CD=3m,∴AC=≈=5(m),AD=≈=4(m),∴CA=CB=5m,AB=2AD=8(m),∴共需钢材约=AC+CB+AB+CD=5+5+8+3=21(m),故答案为:21.11.综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为45°,尚美楼顶部F的俯角为30°,已知博雅楼高度CE为15米,则尚美楼高度DF为米.(结果保留根号)【分析】过点E作EM⊥过点B的水平线于M,过点F作FN⊥过点B的水平线于N,先求出EM的长,在Rt△EBM中求出BM的长,然后求出BN的长,在Rt△FBN中求出FN的长,即可求出DF的长.【解答】解:如图,过点E作EM⊥过点B的水平线于M,过点F作FN⊥过点B的水平线于N,由题意可知CM=DN=AB=30米,又∵CE=15米,∴EM=15米,在Rt△EBM中,∠EBM=45°,∴BM=EM=15米,又∵A是CD的中点,∴BN=AD=AC=BM=15米,在Rt△BFN中,tan∠FBN=,∵∠FBN=30°,BN=15米,∴,∴FN=米,∴DF=(30﹣)米.故答案为:(30﹣).12.为发展城乡经济,建设美丽乡村,某乡对A地和B地之间的一处垃圾填埋场进行改造,把原来A地去往B地需要绕行到C地的路线,改造成可以直线通行的公路AB.如图,经勘测,AC=6千米,∠CAB=60°,∠CBA=37°,则改造后公路AB的长是千米(精确到0.1千米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73).【分析】过点C作CD⊥AB于点D,在Rt△ADC中利用∠CAB的余弦函数求出AD,利用∠CAB的正弦函数求出CD,然后再Rt△BCD中利用∠CBA正切函数求出DB,进而可得出答案.【解答】解:过点C作CD⊥AB于点D,如图:在Rt△ADC中,AC=6,∠CAB=60°,,,∴AD=AC•cos∠CAB=6cos60°=3(千米),(千米),在Rt△CDB中,∠CBA=37°,,,∴(千米),∴(千米).答:改造后公路AB的长是9.9千米.故答案为:9.9.13.某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是.【分析】延长CD交EF于点G,根据题意可得:DB=AC=FG=1m,CG⊥EF,DC=AB=30m,∠EDG=60°,∠ECG=30°,然后利用三角形的外角性质可得∠DEC=∠ECD=30°,从而可得ED=CD=30m,最后在Rt△EGD中,利用锐角三角函数的定义求出EG的长,从而利用线段的和差关系进行计算,即可解答.【解答】解:如图:延长CD交EF于点G,由题意得:DB=AC=FG=1m,CG⊥EF,DC=AB=30m,∠EDG=60°,∠ECG=30°,∵∠EDG是△EDC的一个外角,∴∠DEC=∠EDG﹣∠ECG=30°,∴∠DEC=∠ECD=30°,∴ED=CD=30m,在Rt△EGD中,EG=ED•sin60°=30×=15(m),∴EF=EG+FG=(15+1)m,∴该建筑物的高是(15+1)m,故答案为:(15+1)m.14.(2023•泰安)在一次综合实践活动中,某学校数学兴趣小组对一电视发射塔的高度进行了测量.如图,在塔前C处,测得该塔顶端B的仰角为50°,后退60m(CD=60m)到D处有一平台,在高2m(DE=2m)的平台上的E处,测得B的仰角为26.6°.则该电视发射塔的高度AB为m.(精确到1m.参考数据:tan50°≈1.2,tan26.6°≈0.5)【分析】过点E作EF⊥AB,垂足为F,根据题意可得:AF=DE=2m,EF=AD,BA⊥DA,然后设AC=xm,则EF=AD=(x+60)m,在Rt△ABC中,利用锐角三角函数的定义求出AB的长,再在Rt△FBE中,利用锐角三角函数的定义求出BF的长,从而求出AB的长,最后列出关于x的方程,进行计算即可解答.【解答】解:过点E作EF⊥AB,垂足为F,由题意得:AF=DE=2m,EF=AD,BA⊥DA,设AC=xm,∵CD=60m,∴EF=AD=AC+CD=(x+60)m,在Rt△ABC中,∠BCA=50°,∴AB=AC•tan50°≈1.2x(m),在Rt△FBE中,∠BEF=26.6°,∴BF=EF•tan26.6°≈0.5(x+60)m,∴AB=BF+AF=[2+0.5(x+60)]m,∴1.2x=2+0.5(x+60),解得:x=,∴AB=1.2x≈55(m),∴该电视发射塔的高度AB约为55m,故答案为:55.15.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.【分析】根据特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质、二次根式的性质计算.【解答】解:原式=4×+3+2﹣2=2+3+2﹣2=5.16.(2023•内蒙古)计算:|﹣2|+(π﹣2023)0+(﹣)﹣2﹣2cos60°.【分析】根据绝对值的性质、零指数幂和负整数指数幂、特殊角的三角函数值计算即可.【解答】解:原式=2﹣2+1+4﹣2×=2﹣2+1+4﹣1=2+2.17.(2023•绥化)如图,直线MN和EF为河的两岸,且MN∥EF,为了测量河两岸之间的距离,某同学在河岸FE的B点测得∠CBE=30°,从B点沿河岸FE的方向走40米到达D点,测得∠CDE=45°.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D点继续沿DE的方向走(12+12)米到达P点.求tan∠CPE的值.【分析】(1)根据直角三角形的边角关系得出CH﹣CH=40,进而求出答案;(2)求出HP,根据锐角三角函数的定义进行计算即可.【解答】解:如图,过点C作CH⊥EF于点H,在Rt△CHB中,∵tan∠CBH==,∴HB=CH,在Rt△CHD中,∠CDH=45°,∴CH=DH,又∵BH﹣DH=BD=40,∴CH﹣CH=40,解得CH=20+20,即河两岸之间的距离是(20+20)米;(2)在Rt△CHP中,HP=HD=PD=20+20﹣(12+12)=8+8,∴tan∠CPE====.18.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.(1)求∠GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【分析】(1)根据垂直定义可得∠ACG=90°,然后利用直角三角形的两个锐角互余进行计算,即可解答;(2)延长OA,ED交于点M,根据垂直定义可得∠AOB=90°,从而利用平行线的性质可得∠DMA=∠AOB=90°,再根据对顶角相等可得∠DAM=∠GAC=58°,从而利用直角三角形的两个锐角互余可得∠ADM=32°,然后在Rt△ADM中,利用锐角三角函数的定义求出AM的长,从而利用线段的和差关系求出MO的长,比较即可解答.【解答】解:(1)∵CG⊥CD,∴∠ACG=90°,∵∠AGC=32°,∴∠GAC=90°﹣∠AGC=90°﹣32°=58°,∴∠GAC的度数为58°;(2)该运动员能挂上篮网,理由如下:延长OA,ED交于点M,∵OA⊥OB,∴∠AOB=90°,∵DE∥OB,∴∠DMA=∠AOB=90°,∵∠GAC=58°,∴∠DAM=∠GAC=58°,∴∠ADM=90°﹣∠DAM=32°,在Rt△ADM中,AD=0.8米,∴AM=AD•sin32°≈0.8×0.53=0.42(米),∴OM=OA+AM=2.5+0.424=2.924(米),∵2.924米<3米,∴该运动员能挂上篮网.19.(2023•甘孜州)“科技改变生活”,小王是一名摄影爱好者,新入手一台无人机用于航拍.在一次航拍时,数据显示,从无人机A看建筑物顶部B的仰角为45°,看底部C的俯角为60°,无人机A到该建筑物BC的水平距离AD为10米,求该建筑物BC的高度.(结果精确到0.1米;参考数据:,)【分析】先说明三角形ABD是等腰直角三角形,用等腰三角形的性质求出BD,再在Rt△ACD中用直角三角形的边角间关系求出CD,最后利用线段的和差关系求出建筑物的高度.【解答】解:由题意知,∠BAD=45°,∠CAD=60°,AD⊥BC.∵AD⊥BC,∴∠BDA=∠ADC=90°.∴∠BAD=∠ABD=45°.∴BD=AD=10(米).在Rt△ACD中,CD=AD•tan∠CAD=AD•tan60°=10(米).∴(米).答:该建筑物BC的高度约为27.3米.20.(2023•苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cos54°≈0.6)【分析】当∠GAE=60°时,过点C作CK⊥HA,交HA的延长线于点K,根据已知易得BC∥AH,从而可得四边形ABCD是平行四边形,进而可得AB∥CD,然后利用平行线的性质可得∠ADC=∠GAE=60°,再根据已知可得DK=80cm,最后在Rt△CDK中,利用锐角三角函数的定义求出CD的长;当∠GAE=54°,过点C作CQ⊥HA,交HA的延长线于点Q,在Rt△CDQ中,利用锐角三角函数的定义求出DQ的长,然后进行计算,即可解答.【解答】解:点C离地面的高度升高了,理由:如图,当∠GAE=60°时,过点C作CK⊥HA,交HA的延长线于点K,∵BC⊥MN,AH⊥MN,∴BC∥AH,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD,∴∠ADC=∠GAE=60°,∵点C离地面的高度为288cm,DH=208cm,∴DK=288﹣208=80(cm),在Rt△CDK中,CD===160(cm),如图,当∠GAE=54°,过点C作CQ⊥HA,交HA的延长线于点Q,在Rt△CDQ中,CD=160cm,∴DQ=CD•cos54°≈160×0.6=96(cm),∴96﹣80=16(cm),∴点C离地面的高度升高约16cm.培优争分练(建议用时:30分钟)1.(2024•秦都区校级一模)在Rt△ABC中,AC=8,BC=6,则cosA的值等于()A. B. C.或 D.或【分析】因为原题没有说明哪个角是直角,所以要分情况讨论:①AB为斜边,②AC为斜边,根据勾股定理求得AB的值,然后根据余弦的定义即可求解.【解答】解:当△ABC为直角三角形时,存在两种情况:①当AB为斜边,∠C=90°,∵AC=8,BC=6,∴AB===10.∴cosA===;②当AC为斜边,∠B=90°,由勾股定理得:AB===2,∴cosA==;综上所述,cosA的值等于或.故选:C.2.在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是()A.15° B.45° C.30° D.60°【分析】根据直角三角形的边角关系,求出tanB的值,再根据特殊锐角的三角函数值得出答案.【解答】解:在Rt△ABC中,∠C=90°,∵tanB===,∴∠B=60°,故选:D.3.(2024•界首市校级一模)如图,滑雪场有一坡角为18°的滑雪道,滑雪道AC长为150米,则滑雪道的坡顶到坡底的竖直高度AB的长为()A.150tan18°米 B.150sin18°米C.米 D.米【分析】根据正弦的定义进行解答即可.【解答】解:∵sinC=,∴AB=AC•sinC=150sin18°米,答:滑雪道的坡顶到坡底的竖直高度AB的长为150sin18°米,故选:B.4.(2024•道里区模拟)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A、B、D三点在同一直线上,若AB=(8+8)米,则这棵树CD的高度是()A.米 B.米 C.米 D.米【分析】根据题意可得:CD⊥AB,设BD=x米,然后在Rt△BDC中,利用锐角三角函数的定义求出CD的长,再在Rt△ACD中,利用锐角三角函数的定义求出AD的长,然后根据AD+BD=AB,列出关于x的方程,进行计算即可解答.【解答】解:由题意得:CD⊥AB,设BD=x米,在Rt△BDC中,∠CBD=60°,∴CD=BD•tan60°=x(米),在Rt△ACD中,∠DAC=45°,tan∠DAC=1,∴AD==(米),∵BD+AD=AB,∴x+x=8+8,解得x=8,∴CD=x=8(米),∴这棵树CD的高度约为8米.故选:B.5.如图,在Rt△ABC中,D为BC的中点,若AD=CD,AB=BD,则tan∠C的值为()A. B.2 C. D.【分析】根据正切的定义表示出tan∠C,再结合题中所给线段之间的关系即可解决问题.【解答】解:由题知,因为AD=,所以设CD=k,则AD=.又因为AB=BD,且∠B=90°,所以AB=BD=k,则BC=k+k=2k.在Rt△ABC中,tan∠C=.故选:D.6.(2024•平城区一模)如图是椭圆机在使用过程中某时刻的侧面示意图,已知手柄AD⊥滚轮连杆AB,且AD=20cm,AB=160cm,连杆AB与底座BC的夹角为60°,则该椭圆机的机身高度(点D到地面的距离)为()A. B.C. D.【分析】点D作DE⊥BC于点E,交AB于点F,由含30°角的直角三角形的性质得DF=2AD=40cm,再由勾股定理得AF=20cm,则BF=(160﹣20)cm,然后由含30°角的直角三角形的性质得BE=(80﹣10)cm,则EF=BE=(80﹣30)cm,进而求出DE的长即可.【解答】解:如图,过点D作DE⊥BC于点E,交AB于点F,则∠BEF=90°,由题意可知,∠ABC=60°,∴∠BFE=90°﹣∠ABC=90°﹣60°=30°,∴BE=BF,∵AD⊥AB,∴∠A=90°,∵∠AFD=∠BFE=30°,AD=20cm,∴DF=2AD=40cm,∴AF===20(cm),∵AB=160cm,∴BF=AB﹣AF=(160﹣20)cm,∴BE=×(160﹣20)=(80﹣10)(cm),∴EF=BE=(80﹣30)cm,∴DE=EF+DF=80﹣30+40=(80+10)(cm),即该椭圆机的机身高度(点D到地面的距离)为(80+10)cm,故选:D.7.如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,当跷跷板的一端B着地时,跷跷板AB与地面MN的夹角为20°,测得AB=1.6m,则OC的长为()A. B. C.0.8sin20° D.0.8cos20°【分析】根据正弦的定义计算,得到答案.【解答】解:∵O为跷跷板AB的中点,AB=1.6m,∴OB=0.8m,在Rt△OCB中,sinB=,则OC=OB•sinB=0.8sin20°,故选:C.8.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是.【分析】先利用非负数的性质得到sinA﹣=0,﹣cosB=0,即sinA=,cosB=,则根据特殊角的三角函数值得到∠A、∠B的度数,然后根据三角形内角和定理计算出∠C的度数.【解答】解:∵|sinA﹣|+(﹣cosB)2=0,∴sinA﹣=0,﹣cosB=0,即sinA=,cosB=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.9.(2024•平城区一模)数学实践小组要测量某路段上一处无标识的车辆限高杆MN的高度AB,如图,他们先用测倾器在C处测得点A的仰角∠AEG=30°,然后在距离C处2米的D处测得点A的仰角∠AFG=45°,已知测倾器的高度为1.6米,C、D、B在一条直线上,则车辆限高杆AB的高度为米.(结果保留根号)【分析】延长EF,交AB于点H,设HF=x米,在Rt△AHF中,可得AH=HF=x米,在Rt△AHE中,tan30°=,求出x的值,进而可得出答案.【解答】解:延长EF,交AB于点H,由题意得,HB=DF=CE=1.6米,CD=FE=2米,设HF=x米,则EH=HF+FE=(x+2)米,在Rt△AHF中,∠AFH=45°,∴AH=HF=x米,在Rt△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省金华市2024年中考数学一模试题含答案
- 开封文化艺术职业学院《创新与创业管理A》2023-2024学年第一学期期末试卷
- 江苏警官学院《现代舞基训》2023-2024学年第一学期期末试卷
- 吉安职业技术学院《机器人技术基础B》2023-2024学年第一学期期末试卷
- 湖南理工学院南湖学院《广播电视新闻播音与主持》2023-2024学年第一学期期末试卷
- 黑龙江建筑职业技术学院《CA课件设计》2023-2024学年第一学期期末试卷
- 高考物理总复习《磁场的性质》专项测试卷带答案
- 重庆对外经贸学院《快速建筑设计》2023-2024学年第一学期期末试卷
- 镇江市高等专科学校《食品加工安全控制》2023-2024学年第一学期期末试卷
- 浙江交通职业技术学院《粉体工程与设备》2023-2024学年第一学期期末试卷
- 《榜样9》观后感心得体会四
- 《住院患者身体约束的护理》团体标准解读课件
- 酒店一线员工绩效考核指标体系优化研究
- 高中地理《外力作用与地表形态》优质课教案、教学设计
- 车间生产管理流程图模板
- 河北省邢台市各县区乡镇行政村村庄村名居民村民委员会明细
- 市场部绩效考核表
- 10000中国普通人名大全
- 学霸高中数学高中数学笔记全册(最终)
- 热棒的要点及要求
- 有史以来最完整的App运营推广计划方案分享
评论
0/150
提交评论