




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省安溪一中2022-2023学年招生全国统一考试高考模拟调研卷数学试题(三)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.2.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.3.已知复数z满足(其中i为虚数单位),则复数z的虚部是()A. B.1 C. D.i4.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.255.已知函数,,且在上是单调函数,则下列说法正确的是()A. B.C.函数在上单调递减 D.函数的图像关于点对称6.已知若(1-ai)(3+2i)为纯虚数,则a的值为()A. B. C. D.7.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.4328.已知函数(),若函数有三个零点,则的取值范围是()A. B.C. D.9.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.210.若函数恰有3个零点,则实数的取值范围是()A. B. C. D.11.已知函数为奇函数,则()A. B.1 C.2 D.312.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知全集,集合,则______.14.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量与时间的函数关系为(如图所示),实验表明,当药物释放量对人体无害.(1)______;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过______分钟人方可进入房间.15.如果复数满足,那么______(为虚数单位).16.已知实数,满足,则目标函数的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数是自然对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.18.(12分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,,,求的面积.19.(12分)如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.(1)若,求直线AP与平面所成角;(2)在线段上是否存在一个定点Q,使得对任意的实数m,都有,并证明你的结论.20.(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.21.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.22.(10分)如图,在四棱锥中,底面为等腰梯形,,为等腰直角三角形,,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.2.A【解析】
根据向量平行的坐标表示即可求解.【详解】,,,,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.3.A【解析】
由虚数单位i的运算性质可得,则答案可求.【详解】解:∵,∴,,则化为,∴z的虚部为.故选:A.【点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.4.D【解析】
由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.5.B【解析】
根据函数,在上是单调函数,确定,然后一一验证,A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以,即,所以,若,则,又因为,即,解得,而,故A错误.由,不妨令,得由,得或当时,,不合题意.当时,,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.6.A【解析】
根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.【详解】由题可知原式为,该复数为纯虚数,所以.故选:A【点睛】本题考查复数的运算和复数的分类,属基础题.7.C【解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.8.A【解析】
分段求解函数零点,数形结合,分类讨论即可求得结果.【详解】作出和,的图像如下所示:函数有三个零点,等价于与有三个交点,又因为,且由图可知,当时与有两个交点,故只需当时,与有一个交点即可.若当时,时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;时,显然与有一个交点,故满足题意.综上所述,要满足题意,只需.故选:A.【点睛】本题考查由函数零点的个数求参数范围,属中档题.9.C【解析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.10.B【解析】
求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.11.B【解析】
根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.12.B【解析】
由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据题意可得出,然后进行补集的运算即可.【详解】根据题意知,,,,.故答案为:.【点睛】本题考查列举法的定义、全集的定义、补集的运算,考查计算能力,属于基础题.14.240【解析】
(1)由时,,即可得出的值;(2)解不等式组,即可得出答案.【详解】(1)由图可知,当时,,即(2)由题意可得,解得则为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过分钟人方可进入房间.故答案为:(1)2;(2)40【点睛】本题主要考查了分段函数的应用,属于中档题.15.【解析】
把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.【详解】∵,∴,∴,故答案为:.【点睛】本小题主要考查复数除法运算,考查复数的模的求法,属于基础题.16.-1【解析】
作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出实数x,y满足对应的平面区域如图阴影所示;由z=x+2y﹣1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小.由,得A(﹣1,﹣1),此时z的最小值为z=﹣1﹣2﹣1=﹣1,故答案为﹣1.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)减区间是,增区间是;(2),证明见解析.【解析】
(1)当时,求得函数的导函数以及二阶导函数,由此求得的单调区间.(2)令求得,构造函数,利用导数求得的单调区间、极值和最值,结合有两个极值点,求得的取值范围.将代入列方程组,由证得.【详解】(1),,又,所以在单增,从而当时,递减,当时,递增.(2).令,令,则故在递增,在递减,所以.注意到当时,所以当时,有一个极值点,当时,有两个极值点,当时,没有极值点,综上因为是的两个极值点,所以不妨设,得,因为在递减,且,所以又所以【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数研究函数的极值点,考查利用导数证明不等式,考查化归与转化的数学思想方法,属于难题.18.(1)最小正周期为,单调递增区间为;(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可求得该函数的单调递增区间;(2)由求得,由得出或,分两种情况讨论,结合余弦定理解三角形,进行利用三角形的面积公式可求得的面积.【详解】(1),所以,函数的最小正周期为,由得,因此,函数的单调递增区间为;(2)由,得,或,或,,,又,,即.①当时,即,则由,,得,则,此时,的面积为;②当时,则,即,则由,解得,,.综上,的面积为.【点睛】本题考查正弦型函数的周期和单调区间的求解,同时也考查了三角形面积的计算,涉及余弦定理解三角形的应用,考查计算能力,属于中等题.19.(1);(2)存在,Q为线段中点【解析】
解法一:(1)作出平面与平面的交线,可证平面,计算,,得出,从而得出的大小;(2)证明平面,故而可得当Q为线段的中点时.解法二,以为原点,以为建立空间直角坐标系:(1)由,利用空间向量的数量积可求线面角;(2)设上存在一定点Q,设此点的横坐标为,可得,由向量垂直,数量积等于零即可求解.【详解】(1)解法一:连接交于,设与平面的公共点为,连接,则平面平面,四边形是正方形,,平面,平面,,又,平面,为直线AP与平面所成角,平面,平面,平面平面,,又为的中点,,,,直线AP与平面所成角为.(2)四边形正方形,,平面,平面,,又,平面,又平面,,当Q为线段中点时,对于任意的实数,都有.解法二:(1)建立如图所示的空间直角坐标系,则,,所以,,,又由,,则为平面的一个法向量,设直线AP与平面所成角为,则,故当时,直线AP与平面所成角为.(2)若在上存在一定点Q,设此点的横坐标为,则,,依题意,对于任意的实数要使,等价于,即,解得,即当Q为线段中点时,对于任意的实数,都有.【点睛】本题考查了线面垂直的判定定理、线面角的计算,考查了空间向量在立体几何中的应用,属于中档题.20.(1);(2).【解析】
(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。【详解】(1)当时,由复合函数单调性知,在区间上是增函数,即有,解得;同理,当时,有,解得,综上,。(2)若在上是闭函数,则在上是单调函数,①当在上是单调增函数,则,解得,检验符合;②当在上是单调减函数,则,解得,在上不是单调函数,不符合题意。故满足在区间上是闭函数只有。【点睛】本题主要考查学生的应用意识,利用所学知识分析解决新定义问题。21.(1)见解析;(2)(i)该农场若采用延长光照时间的方法,预计每年的利润为426千元;(ii)若采用降低夜间温度的方法,预计每年的利润为424千元;(3)分布列见解析,.【解析】
(1)估计第一组数据平均数和第二组数据平均数来选择.(2)对于两种方法,先计算出每亩平均产量,再算农场一年的利润.(3)估计频率分布直方图可知,增产明显的大棚间数为5间,由题意可知,的可能取值有0,1,2,3,再算出相应的概率,写出分布列,再求期望.【详解】(1)第一组数据平均数为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国旧塔吊行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国数字电视机行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国成分认证测试解决方案行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国手动牵引站行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国建筑围护结构行业发展趋势分析与未来投资战略咨询研究报告
- 2025年注册会计师考试《会计》财务报告编制与披露实战演练与解析试题
- 2025年劳动关系协调员(初级)劳动保障制度试题试卷
- 2025年美容师(高级)美容美发行业社会责任理论知识考核试卷
- 2025年美容师(中级)美发造型技术革新与创新案例分析考核试卷
- 2025年美发师(初级)实操技能考核试卷热点解析
- 生产工单结单管理制度
- 2025年陕西、山西、青海、宁夏高考物理试卷真题(含答案解析)
- 2025年全国统一高考数学试卷(全国一卷)含答案
- 2025-2030中国过程自动化系统行业市场发展趋势与前景展望战略分析研究报告
- 北京市西城区三年级下学期数学期末试卷(含答案)
- 惜时教育主题班会课件
- 体育聘用合同协议书模板
- 酒店会议就餐协议书
- 银行证券化信贷资产管理办法
- 《缺血性卒中脑细胞保护临床实践中国专家共识》解读
- 带状疱疹培训试题及答案
评论
0/150
提交评论