




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年华东师大版高一数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、若向量=(2,3),=(4,7),则=A.(-2,-4)B.(2,4)C.(6,10)D.(-6,-10)2、【题文】的一个必要不充分条件是().A.B.C.D.3、满足条件的集合M的个数是()A.4B.3C.2D.14、已知函数则等于()A.4B.C.-4D.5、下列函数中与函数y=x-1表示的是同一函数的是()A.y=B.y=x-x0C.y=D.y=x+log36、如图所示程序运行结果是()
A.-8B.4C.-20D.20评卷人得分二、填空题(共9题,共18分)7、已知二次函数f(x)=2x2-4x+3,若f(x)在区间[2a,a+1]上不单调,则a的取值范围是____.8、【题文】设函数则的值域为____.9、【题文】如右图2,在二面角的棱上有两点,直线分别在这个二面角的两个半平面内,且都垂直于若则二面角的大小为________10、【题文】一个棱锥的三视图如图所示;则这个棱锥的体积为________.
11、某公司生产某种产品的总利润y(单位:万元)与总产量x(单位:件)的函数解析式为y=0.1x﹣150,若公司想不亏损,则总产量x至少为____.12、在锐角△ABC中,AC=BC=2,=x+y(其中x+y=1),函数f(λ)=|﹣λ|的最小值为则||的最小值为____.13、(1)已知||=3,||=2.若•=-3,则与夹角的大小为______.
(2)已知=(m-2,-3),=(-1,m),若∥则m=______.14、如图,在正方形ABCD中,E为BC边中点,若=λ+μ则λ+μ=______.
15、不论m取何实数,直线l:(m-1)x+(2m-1)y=m-5恒过定点______.评卷人得分三、证明题(共9题,共18分)16、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.17、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.
(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.18、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.19、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.20、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.21、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.22、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.23、如图;过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.
(1)求证:E为的中点;
(2)若CF=3,DE•EF=,求EF的长.24、如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC.已知圆过点C且与AC相交于F,与AB相切于AB的中点G.求证:AD⊥BF.评卷人得分四、计算题(共2题,共16分)25、一次函数y=3x+m与反比例函数y=的图象有两个交点;
(1)当m为何值时;有一个交点的纵坐标为6?
(2)在(1)的条件下,求两个交点的坐标.26、若∠A是锐角,且cosA=,则cos(90°-A)=____.评卷人得分五、作图题(共4题,共36分)27、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.28、画出计算1++++的程序框图.29、绘制以下算法对应的程序框图:
第一步;输入变量x;
第二步,根据函数f(x)=
对变量y赋值;使y=f(x);
第三步,输出变量y的值.30、已知简单组合体如图;试画出它的三视图(尺寸不做严格要求)
评卷人得分六、综合题(共4题,共40分)31、(2012•镇海区校级自主招生)如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C三点的拋物线对应的函数关系式是____.32、(1)如图;在等腰梯形ABCD中,AD∥BC,M是AD的中点;
求证:MB=MC.
(2)如图;在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).
①画出△OAB向下平移3个单位后的△O1A1B1;
②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π).33、如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A;B两点.
(1)求A;B,C三点的坐标;
(2)求经过A,B,C三点的抛物线的解析式.34、如图;在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式.参考答案一、选择题(共6题,共12分)1、A【分析】【解析】试题分析:=(-2,-4).考点:向量是加减运算。【解析】【答案】A2、D【分析】【解析】本题考查充分必要条件的判定。
解答:因为不等式的解为
所以选项A为充要条件;
选项B为充分不必要条件;
选项C为既不充分也不必要条件;
选项D为必要不充分条件,故选D。【解析】【答案】D3、C【分析】【分析】因为所以集合M中一定得有元素2,3.但可以有元素1,也可以没有元素1,因而满足条件的集合M有2个.分别为M={1,2,3},{2,3}.选C。4、D【分析】【解答】因为所以选D。
【分析】分段函数求函数值要分段代入,适合那段代那段。5、D【分析】解:选项A:定义域为{x|x≠-1};故不同;选项B:定义域为{x|x≠0},故不同;
选项C:y=|x-1|;故不同;
选项D:相同;
故选D.
判断函数是否相等要看两个方面;对应关系与定义域.
本题考查了函数相等的判断,只需对定义域与对应关系两者都判断即可.【解析】【答案】D6、A【分析】解:由程序语句知:算法的功能是求y=的值;
∵x=-5;∴输出y=-8.
故选:A.
算法的功能是求y=的值;代入x=-5,可得输出y的值.
本题考查了选择结构的程序语句,根据算法语句判断算法的功能是解题的关键.【解析】【答案】A二、填空题(共9题,共18分)7、略
【分析】
根据公式,二次函数f(x)=2x2-4x+3图象的对称轴为。
直线x=即直线x=1;
函数f(x)在区间[2a;a+1]上不单调;
说明直线x=1在区间[2a;a+1]内部。
因此列式:2a<1<a+1
所以a的取值范围是0<a<
故答案为0<a<
【解析】【答案】二次函数图象的对称轴为直线x=1;开口朝上,说明在区间(-∞,1)上函数为减函数,在区间(1,+∞)上是增函数.函数在区间[2a,a+1]上不单调,说明在此区间上函数有减也有增,因此不难求出实数a的取值范围.
8、略
【分析】【解析】略【解析】【答案】9、略
【分析】【解析】略【解析】【答案】10、略
【分析】【解析】依题意得,该棱锥的体积等于×(3×4)×3=12.【解析】【答案】1211、1500【分析】【解答】解:由题意得:0.1x﹣150≥0;
解得:x≥1500;
故答案为:1500.
【分析】结合题意解不等式,求出最小值即可.12、【分析】【解答】解:锐角△ABC中,AC=BC=2,且函数f(λ)的最小值为
∴函数f(λ)=
=2≥
即4λ2﹣8λcos∠ACB+1≥0恒成立;
当且仅当λ=﹣=cos∠ACB时等号成立;
代入函数f(λ)中得到cos∠ACB=
∴∠ACB=
∴||=
=2
=2
=2
=2≥2×=
当且仅当x==y时,取得最小值
∴||的最小值为
故答案为:.
【分析】由题意,利用数量积求模长得出∠ACB的大小,再利用数量积和二次函数的性质求出||的最小值.13、略
【分析】解:(1)设与夹角的大小为θ,θ∈[0,π],∵已知||=3,||=2,•=-3;
∴=3•2•cosθ=-3,∴cosθ=-∴θ=
故答案为:.
(2)∵已知=(m-2,-3),=(-1,m),若∥则m(m-2)-(-3)(-1)=0,(m-3)(m+1)=0;
∴m=3;或m=-1;
故答案为:3或-1.
(1)两个向量数量积的定义;求得两个向量夹角的余弦值,可得两个向量夹角.
(2)利用两个向量共线的性质;求得m的值.
本题主要考查两个向量数量积的定义,两个向量共线的性质,属于基础题.【解析】3或-114、略
【分析】解:∵
∴=+=+==λ+μ
∴λ=1,.
则λ+μ=.
故答案为:.
利用正方形的性质;向量三角形法则、平面向量基本定理即可得出.
本题考查了正方形的性质、向量三角形法则、平面向量基本定理,考查了推理能力与计算能力,属于中档题.【解析】15、略
【分析】解:∵不论m取何实数;直线ℓ:(m-1)x+(2m-1)y=m-5恒过定点;
∴m(x+2y-1)-x-y+5=0恒成立;
∴
∴
∴直线ℓ:(m-1)x+(2m-1)y=m-5恒过定点(9;-4).
故答案为:(9;-4).
将直线ℓ:(m-1)x+(2m-1)y=m-5转化为m(x+2y-1)-x-y+5=0;通过解方程组即可得答案.
本题考查恒过定点的直线,转化为关于m的关系式是关键,考查转化与方程组思想,属于基础题.【解析】(9,-4)三、证明题(共9题,共18分)16、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.17、略
【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.
(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】
证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;
则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.
(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.18、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.19、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.20、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.21、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.22、略
【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
从而四边形OBFC为平行四边形;
所以BM=MC.23、略
【分析】【分析】要证E为中点,可证∠EAD=∠OEA,利用辅助线OE可以证明,求EF的长需要借助相似,得出比例式,之间的关系可以求出.【解析】【解答】(1)证明:连接OE
OA=OE=>∠OAE=∠OEA
DE切圆O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
⇒OE∥AD
=>E为的中点.
(2)解:连CE;则∠AEC=90°,设圆O的半径为x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圆O于E=>△FCE∽△FEA
∴,
∴
即DE•EF=AD•CF
DE•EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC•FA=3x(3+2)=15
∴EF=24、略
【分析】【分析】作DE⊥AC于E,由切割线定理:AG2=AF•AC,可证明△BAF∽△AED,则∠ABF+∠DAB=90°,从而得出AD⊥BF.【解析】【解答】证明:作DE⊥AC于E;
则AC=AE;AB=5DE;
又∵G是AB的中点;
∴AG=ED.
∴ED2=AF•AE;
∴5ED2=AF•AE;
∴AB•ED=AF•AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.四、计算题(共2题,共16分)25、略
【分析】【分析】(1)根据图象;有一个交点的纵坐标为6,即可得出y=6,代入解析式得出二元一次方程组即可求出m的值;
(2)将m的值代入两函数的解析式,并将它们联立,求出方程组的解即可得出交点坐标.【解析】【解答】解:(1)∵图象有一个交点的纵坐标为6;
∴y=6;代入两函数解析式得:
;
∴解得:;
∴当m为5时;有一个交点的纵坐标为6;
(2)∵m=5;代入两函数解析式得出:
;
求出两函数的交点坐标为:
3x+5=;
解得:x1=,x2=-2;
∴将x=-2代入反比例函数解析式得:y==-1;
将x=代入反比例函数解析式得:y==6;
∴两个交点的坐标分别为:(,6),(-2,-1).26、略
【分析】【分析】首先根据诱导公式得出cos(90°-A)=sinA,再根据cosA2+sinA2=1求解即可.【解析】【解答】解:∵cosA2+sinA2=1;
又A为锐角,cosA=;
∴sinA=.
∴cos(90°-A)=sinA=.
故答案为:.五、作图题(共4题,共36分)27、略
【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.
∵点A与点A′关于CD对称;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:铺设管道的最省费用为10000元.28、解:程序框图如下:
【分析】【分析】根据题意,设计的程序框图时需要分别设置一个累加变量S和一个计数变量i,以及判断项数的判断框.29、解:程序框图如下:
【分析】【分析】该函数是分段函数,当x取不同范围内的值时,函数解析式不同,因此当给出一个自变量x的值时,必须先判断x的范围,然后确定利用哪一段的解析式求函数值,因为函数解析式分了三段,所以判断框需要两个,即进行两次判断,于是,即可画出相应的程序框图.30、
解:几何体的三视图为:
【分析】【分析】利用三视图的作法,画出三视图即可.六、综合题(共4题,共40分)31、略
【分析】【分析】根据矩形的性质,利用矩形边长得出A,B,C三点的坐标,再利用待定系数法求出二次函数解析式即可.【解析】【解答】解:∵沿着两条坐标轴摆着三个相同的长方形;其长;宽分别为4、2;
∴A点的坐标为:(-4;2),B点的坐标为:(-2,6),C点的坐标为:(2,4);
将A,B,C代入y=ax2+bx+c;
;
解得:;
∴二次函数解析式为:y=-x2-x+.
故答案为:y=-x2-x+.32、略
【分析】【分析】(1)首先利用全等三角形的判定证明△ABM和△DCM即可求解.【解析】【解答】(1)证明:∵四边形ABCD是等腰梯形;
∴AB=DC;∠A=∠D.
∵M是AD的中点;
∴AM=DM.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国可移动的模块化结构行业市场全景分析及前景机遇研判报告
- 2025年中国可编程照明行业市场全景分析及前景机遇研判报告
- 2025年中国抗衰老眼霜行业市场全景分析及前景机遇研判报告
- 氨纶抽条密丝绒项目投资可行性研究分析报告(2024-2030版)
- 口腔健康与肌肤护理
- syb培训动画课件
- 2025年 什邡市市级机关遴选考试笔试试题附答案
- 2025-2030年中国产销化工油漆类行业深度研究分析报告
- 护具系列项目可行性研究报告
- 2025年 北京市海淀区学院路小学招聘考试笔试试题附答案
- 工图机械制图试卷专题11综合型组合体三视图求法习题
- 新版建设工程工程量清单计价标准解读
- 初中数学专题讲座课件
- 【MOOC】人像摄影-中国传媒大学 中国大学慕课MOOC答案
- 【MOOC】计算机组成原理-电子科技大学 中国大学慕课MOOC答案
- 【MOOC】电路分析AⅡ-西南交通大学 中国大学慕课MOOC答案
- 小学生数学逻辑推理题100道及答案解析
- 基本气象要素
- 食品安全规章制度模板打印
- 2024年永平县小升初全真数学模拟预测卷含解析
- 2002版《水利工程施工机械台时费定额》
评论
0/150
提交评论