版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市建瓯东峰中学2020年高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,若f(a)=2,则a的取值为()A.2 B.﹣1或2 C.±1或2 D.1或2参考答案:B【考点】5B:分段函数的应用.【分析】利用分段函数通过x的范围,分别列出方程求出a即可.【解答】解:,若f(a)=2,当a≥0时,2a﹣2=2,解得a=2.当a<0时,﹣a2+3=2,解得a=﹣1.综上a的取值为:﹣1或2.故选:B.2.已知函数在R上单调递减,则实数m的取值范围是(
)A. B. C.[-1,1] D.参考答案:A【分析】由题可得:在R上恒成立,令,转化成在恒成立,利用一元二次不等式在区间上恒成立列不等式组即可求解.【详解】因为函数在上单调递减,所以在上恒成立,令,设,则在上恒成立,所以且,解得,所以实数的取值范围是.故选A.【点睛】本题主要考查了导数与函数单调性间的关系,还考查了一元二次不等式在区间上恒成立问题,考查转化思想及计算能力,属于中档题.3.设为全集,是的三个非空子集,且,则下面论断正确的是
(
)A
BC
D.参考答案:C由文氏图可得结论(C)4.等比数列{an}中,a1+a2=1,a4+a5=﹣8,则=()A.﹣8 B.﹣4 C.2 D.4参考答案:B【考点】等比数列的性质.【专题】计算题;转化思想;等差数列与等比数列.【分析】可设{an}的公比为q,利用a1+a2=1,a4+a5=﹣8,可求得q,从而可求得a5+a6与a7+a8.【解答】解:设{an}的公比为q,∵a1+a2=1,a4+a5=q3(a1+a2)=﹣8,∴q=﹣2,∴a5+a6=q(a4+a5)=﹣16,a7+a8=q3(a4+a5)=64,∴==﹣4.故选:B.【点评】本题考查等比数列的通项公式,重点是考查学生对等比数列性质的灵活应用的能力,属于基础题.5.设集合A={x|1≤x≤2},B={y|1≤y≤4},则下述对应法则f中,不能构成A到B的映射的是()A.f:x→y=x2 B.f:x→y=3x﹣2 C.f:x→y=﹣x+4 D.f:x→y=4﹣x2参考答案:D考点: 映射.专题: 应用题.分析: 按照映射的定义,一个对应能构成映射的条件是,A中的每个元素在集合B中都有唯一的确定的一个元素与之对应.判断题中各个对应是否满足映射的定义,从而得到结论.解答: 解:对于对应f:x→y=x2,当1≤x≤2时,1≤x2≤4,在集合A={x|1≤x≤2}任取一个值x,在集合B={y|1≤y≤4}中都有唯一的一个y值与之对应,故A中的对应能构成映射.对于对应f:x→y=3x﹣2,当1≤x≤2时,1≤3x﹣2≤4,在集合A={x|1≤x≤2}任取一个值x,在集合B={y|1≤y≤4}中都有唯一的一个y值与之对应,故B中的对应能构成映射.对于对应f:x→y=﹣x+4,当1≤x≤2时,2≤﹣x+4≤3,在集合A={x|1≤x≤2}任取一个值x,在集合B={y|1≤y≤4}中都有唯一的一个y值与之对应,故B中的对应能构成映射.对于对应f:x→y=4﹣x2,当x=2时,y=0,显然y=0不在集合B中,不满足映射的定义,故D中的对应不能构成A到B的映射.故选D.点评: 本题考查映射的定义,一个对应能构成映射时,必须使A中的每个元素在集合B中都有唯一的确定的一个元素6.如图,将一张边长为1的正方形纸ABCD折叠,使得点B始终落在边AD上,则折起部分面积的最小值为()A. B. C. D.参考答案:B【考点】相似三角形的性质.【专题】选作题;推理和证明.【分析】先证明△MQB∽△B′AB,再利用相似三角形的性质得出C'N的长,再表示出求出梯形MNC′B′面积,进而求出最小值.【解答】解:如图,过N作NR⊥AB与R,则RN=BC=1,连BB′,交MN于Q.则由折叠知,△MBQ与△MB′Q关于直线MN对称,即△MBQ≌△MB′Q,有BQ=B′Q,MB=MB′,MQ⊥BB′.∵∠A=∠MQB,∠ABQ=∠ABB′,∴△MQB∽△B′AB,∴.设AB′=x,则BB′=,BQ=,代入上式得:BM=B'M=(1+x2).∵∠MNR+∠BMQ=90°,∠ABB′+∠BMQ=90°,∴∠MNR=∠ABB′,在Rt△MRN和Rt△B′AB中,∵,∴Rt△MRN≌Rt△B′AB(ASA),∴MR=AB′=x.故C'N=CN=BR=MB﹣MR=(1+x2)﹣x=(x﹣1)2.∴S梯形MNC′B′=[(x﹣1)2+(x2+1)]×1=(x2﹣x+1)=(x﹣)2+,得当x=时,梯形面积最小,其最小值.故选:B.【点评】本题考查了相似三角形的判定、二次函数的最值、全等三角形的判定和性质及翻转变换,是一道综合题,有一定的难度,这要求学生要熟练掌握各部分知识,才能顺利解答这类题目.7.如图是一个算法的程序框图,如果输入i=0,S=0,那么输出的结果为()A. B. C. D.参考答案:C【考点】程序框图.【分析】分析程序中各变量、各语句的作用,根据流程图所示的顺序知:该程序是利用循环计算S=+++的值,用裂项法求值即可.【解答】解:模拟程序框图运行过程,如下;当i=1时,S=,满足循环条件,此时i=2;当i=2时,S=+,满足循环条件,此时i=3;当i=3时,S=++,满足循环条件,此时i=4;当i=4时,S=+++,不满足循环条件,此时S═+++=1﹣+﹣+﹣+﹣=1﹣=.故选:C.8.今有一组实验数据如下表所示:6.12u1.54.047.51218.01则体现这些数据关系的最佳函数模型是 ()A.u=log2t
B.u=2t-2C. D.u=2t-2x参考答案:C9.已知函数(),正项等比数列满足,则
A.99
B.
C.
D.参考答案:C10.定义运算则函数的图象是
参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.在(的二项展开式中,的系数为
.
参考答案:-40略12.命题“存在,使得”的否定是
;参考答案:13.圆上的点P到直线的距离的最小值是______.参考答案:【分析】求圆心到直线的距离,用距离减去半径即可最小值.【详解】圆C的圆心为,半径为,圆心C到直线的距离为:,所以最小值为:故答案为:【点睛】本题考查圆上的点到直线的距离的最值,若圆心距为d,圆的半径为r且圆与直线相离,则圆上的点到直线距离的最大值为d+r,最小值为d-r.14.已知等比数列中,若,则=
.参考答案:915.已知在△ABC中,A,B,C所对的边分别为a,b,c,R为△ABC外接圆的半径,若a=1,sin2B+sin2C﹣sin2A=sinAsinBsinC,则R的值为.参考答案:【考点】HP:正弦定理.【分析】由正弦定理可化sin2B+sin2C﹣sin2A=sinAsinBsinC为b2+c2﹣a2=bcsinA,由余弦定理可得:a2=b2+c2﹣2bccosA,化为:2(sinA﹣2cosA)=+,再利用基本不等式的性质得出sinA,即可求出R.【解答】解:由正弦定理可化sin2B+sin2C﹣sin2A=sinAsinBsinC为b2+c2﹣a2=bcsinA,再由余弦定理可得a2=b2+c2﹣2bccosA,代入上式可得:2(sinA﹣2cosA)=+≥2,当且仅当b=c时取等号.即2sin(A﹣θ)≥2,其中tanθ=2.即sin(A﹣θ)≥1,又sin(A﹣θ)≤1,∴sin(A﹣θ)=1.∴A﹣θ=+2kπ,即A=θ++2kπ,k∈N*.∴tanA=tan(θ++2kπ)=tan(θ+)==,∴A∈(0,π),sinA=,∵a=1,∴2R==,∴R=.故答案为:.16.在如图的表格中,每格填上一个数字后,使得每一横行成等差数列,每一纵列成等比数列,则的值为________________. 参考答案:略17..从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个的两倍的概率是
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)如图,已知四边形是正方形,平面,,,,,分别为,,的中点.
(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;(Ⅲ)在线段上是否存在一点,使平面?若存在,求出线段的长;若不存在,请说明理由.
参考答案:(Ⅰ)证明:因为,分别为,的中点,所以.又因为平面,平面,所以平面.
……………4分(Ⅱ)因为平面,所以.又因为,,所以平面.由已知,分别为线段,的中点,所以.则平面.而平面,所以平面平面.
…………………9分(Ⅲ)在线段上存在一点,使平面.证明如下:
在直角三角形中,因为,,所以.在直角梯形中,因为,,所以,所以.又因为为的中点,所以.要使平面,只需使.因为平面,所以,又因为,,所以平面,而平面,所以.若,则∽,可得.由已知可求得,,,所以.……14分19.(本题满分12分)如图,四边形ABCD为矩形,四边形ADEF为梯形,AD//FE,∠AFE=60o,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.(Ⅰ)求证:EG//平面ABF;(Ⅱ)求三棱锥B-AEG的体积;(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.参考答案:(I)证明:取AB中点M,连FM,GM.∵G为对角线AC的中点,∴GM∥AD,且GM=AD,又∵FE∥AD,∴GM∥FE且GM=FE.∴四边形GMFE为平行四边形,即EG∥FM.又∵平面ABF,平面ABF,∴EG∥平面ABF.……………4分(Ⅱ)解:作EN⊥AD,垂足为N,由平面ABCD⊥平面AFED,面ABCD∩面AFED=AD,得EN⊥平面ABCD,即EN为三棱锥E-ABG的高.∵在△AEF中,AF=FE,∠AFE=60o,∴△AEF是正三角形.∴∠AEF=60o,由EF//AD知∠EAD=60o,∴EN=AE?sin60o=.∴三棱锥B-AEG的体积为.……8分(Ⅲ)解:平面BAE⊥平面DCE.证明如下:∵四边形ABCD为矩形,且平面ABCD⊥平面AFED,∴CD⊥平面AFED,∴CD⊥AE.∵四边形AFED为梯形,FE∥AD,且,∴.又在△AED中,EA=2,AD=4,,由余弦定理,得ED=.∴EA2+ED2=AD2,∴ED⊥AE.又∵ED∩CD=D,∴AE⊥平面DCE,又面BAE,∴平面BAE⊥平面DCE.
…………………12分20.如图,在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=.(Ⅰ)证明:A1D⊥平面A1BC;(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.参考答案:【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)先证AE⊥平面A1BC,再证A1D∥AE即可‘’(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.【解答】证明:(Ⅰ)∵在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,∴A1D∥AE,AE⊥BC,AE=BE=,∵A1A=4,A1E=.∴A1E2+AE2=,∴AE⊥A1E,∵A1E∩BC=E,∴AE⊥平面A1BC,∵A1D∥AE,∴A1D⊥平面A1BC.解:(Ⅱ)如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),设平面A1BD的法向量为=(x,y,z),由,可取.设平面B1BD的法向量为=(x,y,z),由,可取.cos<>=又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.21.(本小题满分12分)在正项等比数列中,公比,且满足,.(1)求数列的通项公式;(2)设,数列的前n项和为,当取最大值时,求的值.
参考答案:(1);(2)【知识点】数列的求和;等比数列的通项公式解析:(1),,是正项等比数列,,,..(2),且为递减数列当当取最大值时,【思路点拨】(1)利用等比数列的性质和通项公式即可得出;(2)利用等差数列的前n项和公式、二次函数的单调性即可得出.
22.在三棱锥S﹣ABC中,三条棱SA、SB、SC两两互相垂直,且SA=SB=SC=a,M是边BC的中点.(1)求异面直线SM与AC所成的角的大小;(2)设SA与平面ABC所成的角为α,二面角S﹣BC﹣A的大小为β,分别求cosα,cosβ的值.参考答案:【考点】MT:二面角的平面角及求法;LM:异面直线及其所成的角.【分析】(1)取AB的中点D,连结SD,MD,说明三角形SDM是等边三角形,推出异面直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度企业IT运维外包服务与安全评估合同2篇
- 2025年浙科版高一物理上册月考试卷
- 2025年人教版高一生物下册月考试卷含答案
- 二零二五版旅游度假区建设与运营管理合同4篇
- 2025年环保工程打井承包施工合同范本3篇
- 二零二五年度离婚案件律师全程代理服务协议2篇
- 2025年度医院停车场车位租赁与患者就医服务合同4篇
- 2025年度文化产业园项目投资建设合同4篇
- 2025年度商业综合体运营管理与物业服务委托合同4篇
- 二零二五年度铝合金建筑模板租赁与采购合同3篇
- 专升本英语阅读理解50篇
- 施工单位值班人员安全交底和要求
- 中国保险用户需求趋势洞察报告
- 数字化转型指南 星展银行如何成为“全球最佳银行”
- 中餐烹饪技法大全
- 灵芝孢子油减毒作用课件
- 现场工艺纪律检查表
- 医院品管圈与护理质量持续改进PDCA案例降低ICU病人失禁性皮炎发生率
- 新型电力系统研究
- 烘干厂股东合作协议书
- 法院服务外包投标方案(技术标)
评论
0/150
提交评论