




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3有理数的乘法—解答专练—1、观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且这个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×2=×25;②×396=693×.(2)设这类等式左边两位数的十位数字是a,个位数字是b,且2≤a+b<9,写出表示“数字对称等式”一般规律的式子(含a、b),并用所学的数学知识说明你所写的式子的正确性.2、观察下列各式:×=××=×××=…(1)猜想×××…×=;(2)根据上面的规律,计算:(﹣1)×(﹣1)×(﹣1)×…×(﹣1).3、用简便方法计算(1)99×(﹣9)(2)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)4、用简便方法计算:29×(﹣3).5、“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代数学家程大位著的《算法统宗》一书中被称为“铺地锦”.例如:如图1,计算46×71,将乘数46写在方格上边,乘数71写在方格右边,然后用乘数46的每位数字乘以乘数71的每位数字,将结果计入相应的方格中,最后沿斜线方向相加得3266.(1)如图2,用“格子乘法”计算两个两位数相乘,则x=,y=;(2)如图3,用“格子乘法”计算两个两位数相乘,得2176,则m=,n=;(3)如图4,用“格子乘法”计算两个两位数相乘,则k=.6、﹣24×(﹣+﹣)7、分类讨论思想是数学的重要思想,在学习有理数的过程中,也深有感受!(1)当ab<0时,若b>0,|a|<|b|,则a+b0;(2)当abc<0时,若ab>0,则c0;(3)当a与b都是整数,且|a|+|b|=1,求a+b的值.(写出分类讨论的过程)8、已知a的相反数是2,|b|=6.(1)若ab<0,求a+b的值.(2)若|a+b|=﹣(a+b),求a﹣b的值.9、25×11=275,13×11=143,48×11=528,74×11=814.观察上面的算式我们可以发现两位数乘11的速算方法:头尾一拉,中间相加,满十进一.请根据上面的速算方法,回答下列问题.(一)填空:①54×11=;②87×11=;③95×(﹣11)=;(二)已知一个两位数,十位上的数字是a,个位上的数字是b,将这个两位数乘11.(1)若a+b<10;①计算结果的百位、十位、个位上的数字分别是、、,这个三位数可表示为.②请通过化简①中所表示的三位数并计算该两位数乘11的结果验证该速算方法的正确性.(2)若a+b≥10,请直接写出计算结果的百位、十位、个位上的数字.10、阅读理解题在求两位数乘两位数时,可以用“列竖式”的方法进行速算,例如:你能理解上述三题的解题思路吗?理解了,请完成:如图给出了部分速算过程,可得a=,b=,c=,d=,e=,f=.11、已知非零有理数a,b,c满足ab>0,bc>0.(1)求的值;(2)若a+b+c<0,求的值.12、对于点M,N,给出如下定义:在直线MN上,若存在点P,使得MP=kNP(k>0),则称点P是“点M到点N的k倍分点”.例如:如图,点Q1,Q2,Q3在同一条直线上,Q1Q2=3,Q2Q3=6,则点Q1是点Q2到点Q3的倍分点,点Q1是点Q3到点Q2的3倍分点.已知:在数轴上,点A,B,C分别表示﹣4,﹣2,2.(1)点B是点A到点C的倍分点,点C是点B到点A的倍分点;(2)点B到点C的3倍分点表示的数是;(3)点D表示的数是x,线段BC上存在点A到点D的2倍分点,写出x的取值范围.13、红旗中学美术课外小组女同学占全组人数的,加入6个女同学后,女同学就占全组人数的,求美术课外小组原来的人数.14、用简便方法计算:(﹣9)×18.15、碳足迹标签是一种碳排放量的标示方式,让大众了解某一产品或服务所产生的碳排放量多寡,如图所示.碳足迹标签的数据标示有其规定,以碳排放量大于20公克且不超过40公克为例,此范围内的碳足迹数据标示只有20、22、24、…、38、40公克等11个偶数;碳足迹数据标示决定于碳排放量与这11个偶数之中的哪一个差距最小,两者对应标示的范例如下表所示.碳排放量碳足迹数据标示20.2公克20公克20.8公克20公克21.0公克20公克或22公克皆可23.1公克24公克请根据上述资讯,回答下列问题,并详细解释或完整写出你的解题过程.(1)若有一个产品的碳足迹数据标示为38公克,则它可能的碳排放量之最小值与最大值分别为多少公克?(2)承(1),当此产品的碳排放量减少为原本的90%时,请求出此产品碳足迹数据标示的所有可能情形.16、阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求的值;(2)已知a,b,c是有理数,当abc≠0时,求的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.17、已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.18、用短除法求48和120的最大公因数和最小公倍数.19、用简便方法计算:(1);(2)(﹣99)×9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市总工会领导班子述职报告
- 斯玛特维商场互动导视系统解决方案v10(16-9)
- 2025年会计、审计及税务服务合作协议书
- 广东省广州市华侨、协和、增城中学等三校2024~2025学年高一下学期期中考试数学试卷(解析版)
- 安徽省鼎尖联考2024-2025学年高二下学期4月月考数学试题(解析)
- 2025年驾校学车项目建议书
- 2025年视听周边设备:耳机合作协议书
- 晚期肝癌护理措施
- 护理措施诊断
- 风疹患者护理规范
- 《2025年公路工程无机结合料稳定材料试验规程》知识培训
- 《一起长大的玩具》阅读测试题(含答案)(江苏凤凰)
- 吉林长春历年中考语文现代文阅读真题26篇(截至2024年)
- 互联网驱动的保险创新
- 2025年汉中汉源电力集团有限公司招聘笔试参考题库含答案解析
- 卸妆洁面知识培训课件
- 质量投诉与改进管理制度
- 2025年甘肃农垦集团招聘笔试参考题库含答案解析
- 光伏电站继电保护基本原理和管理规范
- 山东省济宁市2022-2023学年高一7月期末生物试题(解析版)
- 住宅小区拆除施工方案
评论
0/150
提交评论