版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年粤教新版九年级数学上册阶段测试试卷220考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、二次函数y=x2+2x-5有()
A.最大值-5
B.最小值-5
C.最大值-6
D.最小值-6
2、把方程变形为x=2;其依据是()
A.等式的性质1
B.等式的性质2
C.分式的基本性质。
D.不等式的性质1
3、若α为锐角,且,则cosα的值为()A.B.C.D.4、上海世博会“中国馆”的展馆面积为15800m2,这个数据用科学记数法可表示为多少m2;要求保留两个有效数字.()
A.1.58×103
B.1.5×104
C.1.6×104
D.1.60×103
5、点P(m;5)在第二象限,则m的取值范围是()
A.m≥0
B.m≤0
C.m<0
D.m>0
6、如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经过2012次后它停在哪个数对应的点上()A.1B.2C.3D.57、已知2011个整数、满足下列条件:,则=A.0B.2010C.-2010D.20118、【题文】下列命题:①4的平方根是2;②所有的矩形都相似;③在锐角三角形的外角中任取一个;取到钝角是必然事件;④等腰三角形一边上的高与这边的中线重合其中任取一个是真命题的概率是(▲)
A.B.C.D.0评卷人得分二、填空题(共5题,共10分)9、如图,在△ABC中,已知AB=3cm,BC=5.6cm,AC=5cm,且,则BD=____cm,DC=____cm.10、升国旗时,某同学站在离国旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰好为45°,若双眼离地面1.5米,则旗杆高度为______米.11、抛物线y=2+(m-5)的顶点在x轴下方,则m=____.12、(2011•卢湾区一模)如果线段c是a、b的比例中项,且a=4,b=9,则c=____.13、(2010•重庆)含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是____千克.评卷人得分三、判断题(共5题,共10分)14、(-4)+(-5)=-9____(判断对错)15、同一条弦所对的两条弧是等弧.____.(判断对错)16、方程44x+11=33的解是x=1(____)(判断对错)17、一条直线有无数条平行线.(____)18、钝角三角形的外心在三角形的外部.()评卷人得分四、作图题(共2题,共14分)19、如图;破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.
①求作此残片所在的圆O(不写作法;保留作图痕迹);
②已知:AB=12cm,直径为20cm,求①中CD的长.20、如图,一个工厂在公路西侧,在河的南岸,工厂到公路的距离与到河岸的距离相等,且与河上公路桥南首(点A)的距离为300米.请用量角器和刻度尺在图中标出工厂的位置.评卷人得分五、证明题(共4题,共8分)21、如图,AC=BG,AB,CG垂直平分线交于点F,求证:∠ABF=∠CGF.22、已知:如图,矩形ABCD的对角线AC,BD交于点O,过点D作DP∥AC,过点C作CP∥BD,交点为P.求证:四边形ODPC是菱形.23、已知:正方形ABCD中;E;F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M.
(1)求证:△ABF≌△DAE;
(2)找出图中与△ABM相似的所有三角形(不添加任何辅助线).24、如图,平行四边形ABCD中,E是CD的中点,△ABE是等边三角形.求证:四边形ABCD是矩形.参考答案一、选择题(共8题,共16分)1、D【分析】
∵二次函数y=x2+2x-5中a=1>0;
∴此函数有最小值;
∴y最小===-6.
故选D.
【解析】【答案】先根据二次函数的解析式判断出函数的开口方向;再由其顶点式求出其最值即可.
2、B【分析】
把方程变形为x=2;其依据是等式的性质2;
故选:B.
【解析】【答案】根据等式的基本性质;对原式进行分析即可.
3、C【分析】【分析】先根据sinα=求出∠α的度数,再根据30°角的余弦值写出即可.【解析】【解答】解:∵sinα=;
∴锐角α=30°;
∴cosα=cos30°=.
故选C.4、C【分析】
15800=1.58×104≈1.6×104.
故选C.
【解析】【答案】较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留;从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.
5、C【分析】
∵点P(m;5)在第二象限;
∴m<0.
故选C.
【解析】【答案】根据第二象限的点的横坐标为负数可得m的取值.
6、D【分析】【解析】试题分析:若它停在奇数点上,则下次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.,若青蛙从5这点开始跳,5为奇数,则沿顺时针方向跳两个点,得2;2为偶数,则沿逆时针方向跳一个点,得1,1为奇数,则沿顺时针方向跳两个点,得3,3为奇数,则沿顺时针方向跳两个点,得5;依次循环下去,循环规律是4,因为2012是4的倍数,能被4整除,所以经过2012次后它停在的点的位置与刚开始相同,为5,选D考点:找规律【解析】【答案】D7、C【分析】,=(-2)×=-2010,故选C.【解析】【答案】C8、A【分析】【解析】解:其中④是真命题,其余为假命题,∴真命题的概率是【解析】【答案】A二、填空题(共5题,共10分)9、略
【分析】【分析】根据已知条件,利用比例的基本性质可得到BD,进而得到DC.【解析】【解答】解:∵AB=3cm,AC=5cm,且;
∴=;
又∵BC=5.6;
∴BD=5.6×=2.1cm;
∴DC=BC-BD=5.6-2.1=3.5cm.10、略
【分析】解:由于某同学站在离国旗杆底部18米处行注目礼;当国旗升至旗杆顶端时,该同学视线的仰角恰好为45°;
则目高以上旗杆的高度h1=18×tan45°=18(米);
旗杆的高度h=h1+1.5=19.5(米).
此题可由仰角的正切函数求得目高以上旗杆的高度;再加上目高即得旗杆的高度.
本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.【解析】19.511、略
【分析】【分析】根据题意,抛物线的解析式是二次函数,即m2-4m-3=2;又顶点在x轴下方,所以m-5<0,解方程,用不等式检验可求m.【解析】【解答】解:∵抛物线是二次函数的图象;
∴m2-4m-3=2;解得m=-1或m=5;
又顶点在x轴下方;
∴m-5<0;即m<5;
∴m=-1.12、略
【分析】
∵c是a、b的比例中项;
∴c2=ab;
又∵a=4,b=9;
∴c2=ab=36;
解得c=±6.
又c为线段的长度;故c=-6舍去;
即c=6.
【解析】【答案】根据比例中项的概念,得c2=ab;再利用比例的基本性质计算得到c的值.
13、略
【分析】
设原来A种饮料的浓度为a,原来B种饮料的浓度为b;从每种饮料中倒出的相同的重量是x千克.
由题意,得=
化简得(5a-5b)x=120a-120b,即(a-b)x=24(a-b);
∵a≠b;
∴x=24.
∴从每种饮料中倒出的相同的重量是24千克.
【解析】【答案】由题意可得现在A种饮料的重量为40千克;B种饮料的重量为60千克,可根据“混合后的两种饮料所含的果蔬浓度相同”来列等量关系.
三、判断题(共5题,共10分)14、√【分析】【分析】根据同号相加,取相同符号,并把绝对值相加即可求解.【解析】【解答】解:(-4)+(-5)
=-(4+5)
=-9.
故答案为:√.15、×【分析】【分析】连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,同一条弦所对的两条弧不一定是等弧.【解析】【解答】解:同一条弦所对的两条弧不一定是等弧;除非这条弦为直径,故此说法错误;
故答案为:×.16、×【分析】【分析】方程移项合并,将x系数化为1,求出解,即可做出判断.【解析】【解答】解:方程44x+11=33;
移项合并得:44x=22;
解得:x=0.5;
则原题解方程错误;
故答案为:×.17、√【分析】【分析】根据平行线的定义:在同一平面内,不相交的两条直线叫平行线即可作出判断.【解析】【解答】解:由平行线的定义可知;一条直线有无数条平行线是正确的.
故答案为:√.18、√【分析】【解析】试题分析:根据三角形的外心是三角形三边垂直平分线的交点即可判断.钝角三角形的外心在三角形的外部,本题正确.考点:三角形的外心【解析】【答案】对四、作图题(共2题,共14分)19、略
【分析】【分析】①连接AC;作出弦AC的垂直平分线,与CD的交点即为圆心O,然后以点O为圆心,以OA为半径作圆即可;
②连接OB,根据垂径定理求出BD的长度,然后利用勾股定理求出OD的长度,从而不难得到CD的长.【解析】【解答】解:①如图所示;⊙O即为所求作的圆;
②连接OB;∵CD垂直平分AB,AB=12cm;
∴BD=AD=AB=6cm;
∵直径为20cm;
∴半径OB=OC=10cm;
在Rt△OBD中,OB2=BD2+OD2;
即102=62+OD2;
解得OD=8;
∴CD=10-8=2cm.20、略
【分析】【分析】为了使工厂到公路的距离与到河岸的距离相等,作河与公路夹角的平分线AM,在AM上以0.5cm表示100米,画出图形.【解析】【解答】解:如图;作河与公路夹角的平分线AM,在AM上以0.5cm表示100米,取AB=1.5cm;
点B即为所求.五、证明题(共4题,共8分)21、略
【分析】【分析】连接AF,CF,根据线段垂直平分线的性质得到AE=BF,CF=GF,推出△AFC≌△BFG,得到∠AFC=∠BFG,于是得到∠AFB=∠CFG,证得△AFB∽△CFG,即可得到结论.【解析】【解答】解:连接AF;CF;
∵AB;CG垂直平分线交于点F;
∴AE=BF;CF=GF;
在△AFC与△BFG中,;
∴△AFC≌△BFG;
∴∠AFC=∠BFG;
∴∠AFB=∠CFG;
∵;
∴△AFB∽△CFG;
∴∠ABF=∠CGF.22、略
【分析】【分析】根据DP∥AC,CP∥BD,即可证出四边形ODPC是平行四边形,又知四边形ODPC是平行四边形,故可得OD=BD=AC=OC,即可证出四边形ODPC是菱形.【解析】【解答】证明:∵DP∥AC;CP∥BD
∴四边形ODPC是平行四边形;
∴OD=BD=AC=OC;
∴四边形ODPC是菱形.23、略
【分析】【分析】(1)由已知及正方形的性质可得到AF=DE;AB=AD,∠BAD=∠ADC=90°,从而可利用SAS判定△ABF≌△DAE.
(2)根据正方形的性质及相似的三角形的判定方法即可得到答案.【解析】【解答】(1)证明:∵ABCD是正方形;
∴AB=AD=CD;∠BAD=∠ADC=90°.
∵CE=DF;
∴AD-DF=CD-CE.
∴AF=DE.
在△ABF与△DAE中;
∴△ABF≌△DAE(SAS).(3分)
(2)解:与△ABM相似的三角形有:△FAM;△FBA;△EAD;
∵△ABF≌△DAE;
∴∠FBA=∠EAD.
∵∠FBA+∠AFM=90°;∠EAF+∠BAM=90°;
∴∠BAM=∠AFM.
∴△ABM∽△FAM.
同理:△ABM∽△FBA;△ABM∽△EAD.(6分)24、略
【分析】【分析】由平行四边形和等边三角形的性质得出∠DEA=∠CEB,由SAS证明△ADE≌△BCE,得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年德阳道路运输从业资格证考试
- 2025年通辽货运上岗证考试多少道题
- 2025年陕西货运从业资格证模拟试题题库及答案大全
- 网络舆情监测与分析服务平台使用协议
- 在线教育平台交易协议
- 中国神话故事里的英雄
- 厦门汽车租赁合同
- 小学生自然现象的故事解读
- 幼儿园小班故事绘画比赛
- 物流场地评估方案
- 精品解析浙教版科学 九年级上册 3.43 简单机械之机械效率 同步练习
- 六棱块护坡施工方案
- 机械制图课件(完整版)
- 夸美纽斯-大教学论-文本细读
- 《行政组织学小抄》word版
- 日立多联机系统调试培训教材
- (完整版)环境科学与工程-专业英语词汇必备(免费)
- 交通管理与控制课件(全)全书教学教程完整版电子教案最全幻灯片
- 小学钢笔字写字课教案(20课时完整版)
- 红金简约风教师退休欢送会PPT通用模板
- 河北科技大学学生成绩复核申请表
评论
0/150
提交评论