版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Received<day>March2023
Revised<day><month><year>
Accepted<day><month><year>
DOI:xxx/xxxx
ARTICLETYPE
GNSSSoftwareDefinedRadio:History,CurrentDevelopments,
andStandardizationEfforts
ThomasPany1|DennisAkos2|JavierArribas3|M.ZahidulH.Bhuiyan4|PauClosas5|Fabio
Dovis6|IgnacioFernandez-Hernandez7|CarlesFernández–Prades3|SanjeevGunawardena8|ToddHumphreys9|ZaherM.Kassas10|JoséA.LópezSalcedo11|MarioNicola12|MarkL.
Psiaki13|AlexanderRügamer14|Young-JinSong15|Jong-HoonWon15
1UniversityoftheBundeswehrMunich,Neubiberg,Germany
2UniversityofColorado,Boulder,USA
3CentreTecnològicdeTelecomunicacionsdeCatalunya,Barcelona,Spain
4FinnishGeospatialResearchInstitute,Kirkkonummi,Finland
5NortheasternUniversity,Boston,USA
6PolitecnicodiTorino,Turin,Italy
7EuropeanCommission,Brussels,Belgium
8AirForceInstituteofTechnology,Wright-PattersonAFB,USA
9TheUniversityofTexasatAustin,Austin,USA
10TheOhioStateUniversity,Columbus,USA
11UniversitatAutònomadeBarcelona,CerdanyoladelVallès,Spain
12LINKSFoundation,Turin,Italy
13VirginiaTech,Blacksburg,USA
14FraunhoferInstituteforIntegratedCircuitsIIS,Erlangen,Germany
15InhaUniversity,Incheon,SouthKorea
Summary
Takingtheworkconductedbytheglobalnavigationsatellitesystem(GNSS)software-definedradio(SDR)workinggroupduringthelastdecadeasaseed,thiscontributionsummarizesforthefirsttimethehistoryofGNSSSDRdevelopment.IthighlightsselectedSDRimplementationsandachievementsthatareavailabletothepublicorthatinfluencedthegeneralSDRdevelopment.Therelationtothestandard-izationprocessofintermediatefrequency(IF)sampledataandmetadataisdiscussed,andanupdateoftheInstituteofNavigation(ION)SDRStandardisproposed.TheworkfocusesonGNSSSDRimplementationsongeneralpurposeprocessorsandleavesasidedevelopmentsconductedonfieldprogrammablegatearray(FPGA)andapplication-specificintegratedcircuits(ASICs)platforms.Datacollectionsystems(i.e.,front-ends)havealwaysbeenofparamountimportanceforGNSSSDRs,andarethuspartlycoveredinthiswork.TheworkrepresentstheknowledgeoftheauthorsbutisnotmeantasacompletedescriptionofSDRhistory.
KEYWORDS
GNSS,software-definedradio
1IINTRODUCTION
Receiverdevelopmenthasalwaysbeenanintegralpartofsatellitenavigation,eversincetheearlystudiesconductedfortheU.S.GlobalPositioningSystem(GPS).Theveryfirstreceiverswerehugedevices,realizingthecorrelationofthereceived
satellitesignalwithinternallygeneratedcodeandcarrierreplicasbyamixtureofdigitalandanalogelectronics(Eissfeller
&Won,
2017)
.Advancesinsemiconductortechnologysoonenabledsignalprocessingondedicatedchips.ThistechnologywasofcoursecomplextohandleandmostlylocatedwithintheU.S.industry.DespitethesuccessofGPSanditsRussiancounterpartGlobalnayaNavigazionnayaSputnikovayaSistema(GLONASS),receiverinternaltechnologywasbarelyaccessibletothebroaderresearchcommunityforalongtime,asitseemedtobeimpossibletorealizeGNSSsignalprocessingonlow-costcomputers.Evenintheyear1996akeyreceiverdesignpioneerexpressedskepticismthatgeneralpurposemicroprocessors
were,orwouldeverbe,asuitableplatformforimplementingaGNSSreceiver(Kaplan,
1996)
.
2
ThesituationradicallychangedwhenthealgorithmsofaGPSreceiverwerefirstimplementedasMatlabsoftwareonadesktoppersonalcomputer(PC)andestimatesofdigitalsignalprocessor(DSP)resourcesrequiredtorunthealgorithmsinreal-time
wereencouraging(D.Akos&Braasch,
1996;
D.M.Akos,
1997)
.Soonafter,real-timeprocessingwasdemonstratedevenonconventionalPCsandthewidespreaduseofsoftwareradiotechnologytookoffwithexponentialgrowth.Interestingly,softwareradiotechnologydidnotreplaceexistinghardwarereceiversusuallyrealizedasoneormoreASICs,butcomplementedthese,allowingresearcherstoeasilyimplementandtestnewalgorithmsortodevelophighlyspecializedreceiverswithreasonableeffort.Today,thisisawell-establishedapproachformilitary,scientific,andevencommercialapplicationsasdescribedby
Curran
etal.
(2018)
.
Asdifferentresearchgroupsdevelopedtheirownsoftwareradios,theyuseddifferentdatacollectionsystemstosampletheGNSSsignals.WhereasthedataformatofthedigitalGNSSsignalstreamsiscomparablyeasytodescribe,thewidespreaduseofsoftwareradiotechnologymadeitnecessarytointroduceacertainlevelofstandardization,whichwasfinallyachievedbyagroupofresearchersasdocumentedby
Gunawardenaetal.
(2021)
.Theresultwastheso-
calledIONSDRStandard(IONSDR
WorkingGroup,
2020)
.
Astechnologyfurtherevolved,newGNSSsoftwareradiosemergedandsomedeficienciesoftheIONSDRStandardbecame
apparent(Clementsetal.,
2021)
.Theseconditionspromptedthepresentpaper,whosecontributionsarefour-fold.First,itpresentsthefirsthistoryofGNSSSDRdevelopment(Section
2)
.Second,itoffersadetaileddescriptionofselectGNSSSDRs(Section
3)
.Third,itoverviewsrecentfront-enddevelopments(Section
4)
.Finally,itsummarizesthehistoryoftheIONSDRStandardandproposesanupdatethereto(Section
5)
.
2GNSSSOFTWAREDEFINEDRADIOHISTORY
ThehistoryofGNSSSDRrequiresmorethanabitofrecollection,whichcanbefraughtwithinaccuracies,noneofwhichareintentionalinthepresentwork.Correctionswouldalwaysbewelcome.
GNSSSDRtracesitsrootstoOhioUniversity’sAvionicsEngineeringCenteraround1994.ProfessorMichaelBraasch,anewly-mintedfacultymemberoftheElectricalandComputerEngineeringDepartmentandalreadyrecognizedasanexpertinGNSSmultipath,wasinterestedincreatingahigh-fidelitysimulationoftheinternalsignalprocessingwithinGPSandGLONASSreceivers.DennisAkos,aPh.D.studentintheDepartment,wasintriguedbytheidea.Alreadyharboringakeeninterestincomputerscienceandprogramming,AkostookonthesimulationprojectatBraasch’srequestundertheFAA/NASAJointUniversityProgram.Meanwhile,publicationof“TheSoftwareRadioArchitecture”inthe1995IEEECommunication
Magazine(Mitola,
1995)fueledAkos’sandBraasch’sthinkingthatthis“simulation”couldinsteadbetargetedtowardanactual
softwareradioimplementation.TheresultwasthefirstpublicationonGNSSSDR,whichappearedintheproceedingsofthe
1996IONAnnualMeeting(D.Akos&Braasch,
1996)
.
Developmentofthisinitialsimulation/implementationwassignificantlyfurtheredthroughcooperationwithDr.JamesB.Y.TsuiofWrightPattersonAirForceBase.Well-recognizedasanexpertindigitalreceivers,Tsuihadrecentlytakenaninterestinsatellitenavigation.In1995,twosummerinterns,DennisAkosfromOhioUniversityandMichaelStockmasterfromTheOhioStateUniversity,workedunderTsui’sguidancetodevelopaMatlabimplementationofthesignalprocessingrequiredforbasicGPSreceiveroperation.AdigitaloscilloscopewasusedtocapturetheinitialIFdatathatwerecriticaltodevelopinganddebuggingthoseearlyalgorithms.Akoswasresponsibleforthelower-levelsignalprocessing(acquisitionaswellascode/carriertracking),whileStockmasterimplementedthenavigationsolution.ThecumulativeresultwasthefirsteverGPSSDRimplemen-tation.Althoughfullyoperational,itwas“slowasmolasses”:processing30secondsofIFdatarequiredhoursofcomputationtime.
TsuipublishedthefirsttextbookonGPSSDRin2000(Tsui,
2000)
.Aparallelcontributionofthisinitialeffortwasthedirectradiofrequency(RF)samplingfront-end,whichgarneredsignificantinterestandpushedadvancesinanalog-to-digital
converterdevelopment(D.Akosetal.,
1999)
.
AfterreceivinghisPh.D.in1997,AkosstartedhisacademiccareerasanAssistantProfessorintheSystemteknikDepartmentofLuleåUniversityofTechnologyinSweden,wherehetaughtacourseoncomputerarchitecture.ItwasherethatGPSSDRfirstachievedrealtimeoperation.Foraclassproject,AkosprovidedaMatlab-basedGPSSDRandchallengedagroupofstudentsto“getittorunasfastaspossible”subjecttotherequirementthatthecomplexaccumulationproductsforeachchannelwerewithin10%ofthoseproducedbytheoriginalMatlab-basedGPSSDR.Itwasin1999thatthefirst“realtime”operationwaspossible,processing60secondsofIFdatain55seconds.ThiswasanotableachievementatthetimegiventhatrenownedGPSexpertPhilipWard,whowasresponsibleforsomeofthefirstGPSreceivers,hadrecentlyexpressedskepticismabouttheprospectofa
3
fullysoftware-definedreal-timeGPSSDR,writing“Theintegrate-and-dumpaccumulatorsprovidefilteringandresamplingattheprocessorbasebandinputrate,whichisaround200Hz[...and]wellwithintheinterruptservicingrateofmodernhigh-speedmicroprocessors.Butthe5-
to50-MHzrates[ofintermediatefrequencysamples]wouldnotbemanageable”(Kaplan,
1996)
.ThisrealtimeimplementationeffortwasledbystudentPer-LudvigNormarkandledtotheresultspublishedby
D.M.Akoset
al.
(2001)
.
Inthemeantime,KaiBorre,ageodesyprofessorfromAalborgUniversity,hadalsodevelopedinthemid-late1990sMatlabcodeforGPSreceivers.Borre’scodefocusedonthenavigationblockandincludingfunctionsforconversionofcoordinatesandtimereferences,satellitepositiondetermination,andatmosphericcorrections.ThejointeffortsofAkos,Borre,andothers
wouldlaterleadtothewell-knownbook(Borreetal.,
2007),aprimaryreferenceforGNSSSDRoverthenextyears,andthe
relatedSoftGPSMatlabreceiver.
Upongraduation,NormarkcontinuedhisGNSSreceiverdevelopmentwiththeGPSLaboratoryatStanfordUniversityandthenreturnedhometoSwedenwhereheco-foundedNordNavTechnologies,whichdevelopedthefirstGalileoSDR,andhelpedestablishthearchitecture,togetherwithCambridgeSiliconRadio(CSR),topushGNSStoapricepointacceptabletothemobilephoneadoption.CSR,atthetimeadominantsupplierofBluetoothhardwaretothemobilephonemarket,acquiredNordNavin2006andtheyjointlyredesignedtheCSR2.4GHzradiotomultiplextothe1575.42MHzGPSL1band,exploitingthefactthatmostBluetoothapplicationshavearelativelylowdutycycle.Thisapproach,coupledwiththereal-timesoftwareGPSimplementation,providedanear-zero-added-costGPSreceiver.
TherehavebeennumerouscontributionstoGNSSSDRdevelopmentsincetheseearlyyears,manyofwhicharefromtheco-authorsofthispaper.SelecteddevelopmentsbytheauthorsareoutlinedinSection
3
includingasurveyofachievementsbyotherresearchersinSection
3.11.
Theauthorsareawarethatmanyotherimportantcontributionsaremissing,andmakenoclaimsofestablishingacomprehensivedescription.Inordertogivethereaderabetterorientationaboutthechronologicalorderofalldevelopments,wepresentTab.
1,reiteratingthattheselectionofreferencesispartlysubjectiveandoftensimilardevelopments
havebeencarriedoutbyseveralresearchgroups.ThetimelinedemonstratestheflexibilityofSDRtechnology,i.e.,thesamecodebaseisusedforGPSL1C/Acodesignalsandforsignalsofopportunity(SOP)fromcellularterrestrialtransmittersorfromcommunicationsatellitesinlowEarthorbit(LEO).
3CURRENTSTATUSOFGNSSSOFTWAREDEFINEDRADIOS
InJune2023,aquickinternetsearchdidnotrevealanycomprehensivelistingofallGNSSSDRsand
Wikipedia
(2023)lists
sevenentries,whichisfarbelowthenumberofreceiversknownbytheauthors,evenifthefollowingcriterionisappliedtolimitthescope:aGNSSSDR(orsoftwarereceiver)isdefinedasapieceofsoftwarerunningonageneralpurposecomputerconvertingsamplesofareceivedGNSSsignalintoapositionvelocityandtime(PVT)estimate.Itisclearlyunderstoodthatafront-endincludinganalog-to-digitalconversion(ADC)isrequiredtosamplethereceivedsignal,butotherthanthatnofurtherfunctionalityisallowedtoberealizedviahardware.Withthisdefinition,threecategoriesofsoftwarereceiverscanbeintroduced:
real-timereceivers:monolithicormodularsoftwarepackageswritteninanefficientlow-levelprogramminglanguage(likeCorC++)typicallyoptimizedforrun-timeefficiencyandstability
teaching/researchtools:softwarepackageswritteninahighlevelprogramminglanguagelikePythonorMatlaboptimizedforcodereadabilityandflexibility
snapshotreceivers:receiversoptimizedforveryshortbatchesofsignalsamples
Furthermore,thesoftwarepackageshallallowsomeconfigurationflexibilityand(atleasttheoretically)supporttheIONSDRStandard.Thefollowingsubsectionsintroduceafewselecteddevelopments,emphasizingtherationalebehinddesignchoicesandcurrentstatus.Eachsub-sectionisrepresentedbyoneentryinTab.
2
togivethereaderaquickoverviewofthemaincharacteristicsofeachdevelopment.Section
3.1
describestheworkofPsiaki,Ledvina,andHumphreysandtheireffortsinreal-timeprocessingonDSPswiththebit-wise-parallelapproachprovingtobehighlysuccessfulevenforspaceapplications.Section
3.2
coversworkofPany/othersintheireffortswithmulticonstellation/multifrequencyGNSS.Section
3.3
andSection
3.4
covertheeffortsofBorreandothersinareadableopensourceMatlabGPSSDRstartedin(Borreetal.,
2007),withthemost
recentGNSSupdatereportedin
Borreetal.
(2022)
.Akoshasalsocontinuedthisacademicdevelopmentofasuiteofopen
sourceGNSSSDRs(Bernabeuetal.,
2021)
.Thewidelyusedopen-sourcereceiverGNSS-SDRisdescribedinSection
3.5.
4
TABLE1TimelineofGNSSSDRdevelopments
Year
Milestonewithcomment
Reference
1995
Emergenceofsoftwareradioapproach
(Mitola,
1995)
1996
FirstpublicationofaGPSSDRdevelopment
(D.Akos&Braasch,
1996)
1999
Firstreal-timesoftwarereceiverwithGPSL1C/Acode
(D.M.Akosetal.,
2001)
2000
FirsttextbookonGPSSDRpublished
(Tsui,
2000)
2002+
Useofbit-wisecorrelationandSIMDinstructions
(Ledvinaetal.,
2003;
Panyetal.,
2003)
2002+
GNSSSDRsascommercialproducts
NordNav,IFEN,Trimble,LocusLock,...
2004
Firstmulti-GNSS/multi-frequencyGNSSSDRs
(Ledvina,Psiaki,Sheinfeld,etal.,
2004;
Pany,
Eissfeller,etal.,
2004)
2004
Firstreal-timeGNSS/INSintegrationwithSDR
(Gunawardenaetal.,
2004)
2005
GNSSSDRconsolidationatPolitecnicodiTorinoandLINKSFoundation
Section
3.9
2005
DemonstrationofvectortrackingwithaGNSSSDR
(Panyetal.,
2005)
2006
Firstreal-timeall-in-viewembeddableGNSSSDR
(T.Humphreysetal.,
2006)
2006
FirstuseofSDRtechnologyforAMsignalsofopportu-nity
(McEllroy,
2006;
McEllroyetal.,
2006)
2007
Startofwide-spreadadoptionofSDRtechnologyinGNSSresearch
(Borreetal.,
2007)
2007
Firstdevelopmentofasnapshotreceiver
Section
3.8
2009
Firstmulti-coreGNSSSDR
(T.E.Humphreysetal.,
2009)
2010
Adoptionofacomputersciencebestpracticecollabora-tiveframework
Section
3.5
2010
FirstuseofGPUsforcorrelation
(Hobigeretal.,
2010)
2011+
UseofGNSSSDRforionosphericresearch
(O’Hanlonetal.,
2011;
Peng&Morton,
2011)
2012+
SDRdevelopmentsattheFinnishGeospatialResearchInstitute
(Borreetal.,
2022;
Söderholmetal.,
2016)
2012
UseofaDVB-Tultra-low-costfront-endforGNSSSDR
Section.
3.5
2012+
UseofSDRtechnologyforLTEsignalsofopportunity
(delPeral-Rosadoetal.,
2013;
Driussoetal.,
2017;
Shamaeietal.,
2018)
2014+
UseofGNSSSDRsinspace
(Lightseyetal.,
2014;
Murrianetal.,
2021)
2014
UseofSDRsformixedcellular3GGSM/CDMAandDTVSOP
(Yangetal.,
2014)
2015+
AbundanceofprocessingpowerforGNSSSDRavailable
(Dampfetal.,
2015;
Nicholsetal.,
2022)
2017+
UseofSDRsfor3GCDMAand4GLTESOP
(Kassasetal.,
2017)
2018
FirstuseofPythonfordedicatedteachingofGNSSSDR
Section
3.7
2018
FirstSDRenablingsub-meter-levelcarrier-phase-basedUAVnavigationwith3GCDMAand4GLTESOP
(Khalife&Kassas,
2018
2022)
2020
FormaladoptionofIONSDRStandard
Section
5
2020
UseofSDRforstationarypositioningwithmulti-constellationOrbcommandIridiumLEOSOP
(Farhangian&Landry,
2020;
Orabietal.,
2021)
2021
FirstSDRfor5GSOP
(Shamaei&Kassas,
2021b)
2021+
UseofGNSSSDRtosupportdevelopmentofnewnavi-gationsatellitesystems
(Milleretal.,
2023;
Songetal.,
2021)
2021
FirstSDRenablingvehiclenavigationwithmulti-constellationLEOSOP
(Kassasetal.,
2023
2021)
2022
FirstSDRenablingaircraftnavigationwithcellularSOP
(Kassas,Abdallah,etal.,
2022;
Kassas,Khalife,
Abdallah,Lee,Jurado,etal.,
2022)
5
TABLE2OverviewofGNSSSDRsdiscussedinSection
3
Name
Mainlan-guage
Opensource
Mainfocus
GRID
C++
No
Real-timeoperationofadvancedalgorithmsonembeddeddevices
MuSNAT
C++
No
Analysisofnavigationsignalprocessingandalgorithmprototyping
SoftGPS
MATLAB
Yes
SuiteofGNSSSDRswithwidespreaduseandaccompanyingbook
FGI-GSRx
MATLAB
Yes
Multi-GNSSSDRwithaccompanyingbook
GNSS-SDR
C++
Yes
Real-timeSDRwithmodularstructureandwidespreaduse
AutoNav-SDR
MATLAB
No
SupportforKPS-development,API,andGPU
PyChips
Python
No
Multi-GNSSandoptimizedforuseinteachingclasses
UABSnapshotGNSSReceiver
MATLAB
No
Snapshotreceiverthatcanbeoperatedinthecloud
NGene
ANSIC
No
EfficientGNSSSDRusedinnumerousGalileo-relatedprojects
MATRIX
MATLAB,C++
No
CombinedprocessingofGNSSwithcellular3G/4G/5GandLEO(Starlink,OneWeb,Orbcomm,Iridium,andGlobalstar)signals
TheAUTONAVreceiverusedtosupportthedevelopmentofKoreanPositioningSystem(KPS)isdiscussedinSection
3.6
andPyChips(cf.Section
3.7)isthebasisfortutorialclassesoftheION
.TheUABsnapshotGNSSsoftwarereceiverisdescribedinSection
3.8,whileSection
3.9
discussesaSDRusede.g.totheauthenticationschemes,reflectometryortoassesstheinfluenceofnon-standardGNSStransmissions.Section
3.10
extendsthescopeofSDRtonon-GNSSsignals.
WhereasatthebeginningoftheGNSSSDRdevelopmentthedifferentreceiverswerelinkedtospecificpersonsorresearchinstitutes,todayoftendifferentreceivers,toolsorcodebasesareusedatthesameinstitute.Ontheotherhand,codebasesfirstdevelopedbyasingleinstitutespreadintodifferentinstitutes.Forexample,thedevelopmentsof
Borreetal.
(2007)forkedinto
severalbranches[e.g.
(Bernabeuetal.,
2021;
FGI,
2022;
Zhang,
2022)],asdiscussedinSection
3.3
andSection
3.4.
3.1Bit-WiseParallelismandtheEmergenceofGRID
Theoriginalreal-timeGNSSsoftwareradioworkby
D.M.Akos
(1997)inspiredaneffortwithintheCornellGPSgroup
.Psiakihadbeenworkingwithnon-real-timesoftwareGNSSsignalprocessinginMatlabforabouttwoyearswhenhestartedtowonderwhethertheslowMatlaboperationscouldbetranslatedtoruninreal-timeonageneraldesktopworkstation.ThebottleneckinGNSSdigitalsignalprocessingoccurswhendoingtheoperationsthatinitiallyprocessthehigh-frequencyRFfront-endsamples.RFfront-endstypicallysampleat4MHzorfaster.A12channelreceiverwouldhavetoperformontheorderof400millionoperationspersecondormoreinorderdoalloftheneededsignalprocessing.Psiakiconceivedtheconceptofbit-wiseparallelprocessingasameansofaddressingthischallenge.Herecruitedthen-Ph.D.candidateBrentLedvinatomakeanattemptatimplementingtheseideasintheCprogramminglanguageonaReal-TimeLinuxdesktopworkstation.Ledvinasucceededin
developinga12-channelreal-timeL1C/A-codereceiverafterabout6months’effort(Ledvinaetal.,
2003)
.
Themainconceptofbit-wiseparallelismistoworkefficientlywithRFfront-enddatathathavealownumberofquantizationbits.IfanRFfront-endproducesa1-bitdigitaloutputstream,then32successivesign-bitsamplescanbestoredinasingle32-bitunsignedintegerwordonageneral-purposeprocessor.Thirty-twosuccessiveoutputsamplesofa2-bitRFfront-endcanbestoredintwo32-bitwords,onecontainingthesuccessivesignbitsandtheothercontainingthesuccessivemagnitudebits.Eachchannelofthesoftwarereceivergeneratesa1-bitora2-bitrepresentationof32successivesamplesofitsIFcarrierreplica,bothin-phaseandquadrature,andthesuccessivesamplesarestoredinparallelin32-bitunsignedintegerwords.Similarly,itgeneratesa1-bitrepresentationof32successivesamplesofitspromptpseudo-randomnoise(PRN)codereplicaandstorestheminparallelinasingle32-bitunsignedintegerword.Italsogeneratesanearly-minus-latePRNcodereplicathatrequires1.5bitspersample,whichtakesuptwo32-bitunsignedintegerwordstostore32samples.Thesereplicasignalscanbegeneratedveryefficientlybyusingpre-tabulated32-bitwords.Thesoftwarereceiverthenperformsaseriesofbit-wiseAND,OR,XOR,andsimilaroperationsthathavetheeffectofperformingPRNcodemixingandIF-to-basebandcarriermixing.Theoutputsofthemixingoperationsarecontainedinasmallnumberof32-bitwords,thenumberofwhichdependsonthenumberofbitsineachRFfront-endoutputsampleandthenumberofbitsintheIFcarrierreplicas.
6
Thefinaloperationisaccumulationoftheresultsinthe32-bitwords.Thisinvolvessetsofbit-wiseBooleanoperations,asper
Ledvinaetal.
(2003),followedbysummationofthenumberof1-bitsintheresulting32-bitunsignedintegerwords
.Thebitsummationoperationsprovedtobeachallengeintermsofminimizingexecutiontime.Ledvinasolvedthisproblembyusingapre-computed1-dimensionaldatatablewhoseinputwastheunsignedintegerandwhoseoutputwasthenumberof1-bits.Inordertokeepthetablesizereasonable,itonlycountedthebitsina16-bitunsignedintegerword.Theoriginalreceiver’s32-bitwordsweresplitinhalf,twotablelook-upswereperformed,andtheresultssummedinordertocountallthe1-bits.Theoriginalalgorithmsaredefinedby
Ledvinaetal.
(2003),
Ledvina,Psiaki,Powell,&Kintner
(2004),and
Ledvina,Psiaki,Powell,&
Kintner
(2006)
.
WhenusingverylongPRNcodes,suchastheL2CCLcode,theoriginalmethod’swhole-periodPRNcodetablesoftheproper32-bitwordsatvariouscodephasesbecameimpracticallylarge.Therefore,anewmethodwasdevelopedforlongPRNcodes.Ittabulates32-bitwordsofshortgenericPRNcodechipsequences,withallpossiblecombinationsofashortsequencesofchipsconsideredatvariousPRNcodeoffsetsrelativetothestartofthesamplesofthe32-bitword.Thosemethodsaredescribedby
Psiaki
(2006)andby
Ledvinaetal.
(2007)
.Thistechniqueprovedinvaluablefordealingwithlongcodes.
Aprocessorthatcanoperateonwidersegmentsofdata,upto512bitsforcurrentsingleinstructionmultipledata(SIMD)
instructions,gainssubstantialadditionalsignalprocessingspeedincreases(Nicholsetal.,
2022)
.Note,however,thatthespeedincreasefactorsoverbrute-forceintegercalculationsaretypicallynotashighasthenumberofbitsperword.Thatis,thetechniquesdonotspeeduptheoperationsbyafactorof32whenprocessing32samplesinparallelbyusing32-bitwordstorepresent32samples.Fora2-bitRFfront-endanda32-bitprocessor,thespeed-upfactormightbeonly4becausethebit-wiseparallelapproachrequiresmultipleoperationsdueto,say,asimplemultiplicationofonetimeseriesbyanother.Ifonedoublesthenumberofbitsperword,however,thenthespeedtendstodouble.Aparticularlyhelpfulfeatureofsomerecentprocessordesignsistheirinclusionofahardwiredcommandtocountallthe1bitsinaword.This“popcount”intrinsicobviatesthetablelook-upsthatcounted1-bitsintheoriginalbitwiseparalleldesign.IfthenumberofbitsincreasesintheRFfront-endsamplesand/ortheIFcarrierreplicas,however,thenthebit-wiseparallelmethodofsignalprocessingslowsdown.Signalsrepresentedby3or4bitsmightcausetheprocessingspeedgainsofbit-wiseparallelalgorithmstobelimitedorevennon-existent.
Aftergettingthebasicalgorithmsworkinginreal-timeusing32-bitwords,theCornellgroupshowcasedtheefficacyofreal-timeGNSSsoftwareradiobyusingthetechniquestodevelopadual-
frequencyL1C/AandL2Creceiver(Ledvina,Psiaki,
Sheinfeld,etal.,
2004)andaGPS/GalileoL1civilianreceiver(Ledvina,Psiaki,Humphreys,etal.,
2006)
.Thesereal-timesoftwareGNSSreceiverseachrequiredonlyseveralperson-daystodevelopthemfromtheoriginalL1C/Acodereceiver.Ofcourse,theL1/L2receiverrequiredanewdual-frequencyRFfront-end.TheGPS/GalileoreceiverrequiredknowledgeofthecivilianGalileoE1PRNcodes,whichhadnotbeenpublishedatthattime.ThisrequirementledtoasupportingeffortwhichsuccessfullydeducedtheGalileoGIOVE-AE1PRNcodesbyrecordingtheirrawRFfront-endsamplesandpost-processingthosesamplesusingasuiteofcustom-designedSDRsignalprocessingalgorithmsinordertopullthechipsoutofthenoise
(Psiakietal.,
2006)
.
Thenextdevelopmentwastore-implementthebit-wiseparallelcodeforembedded(low-power,low-cost)processing.Ini-tiallytargetingaTexasInstrumentsDSP,thisworkwasaccomplishedin2006bythen-Ph.D.candidateToddHumphreys
(T.Humphreysetal.,
2006)
.Later,asaprofessoratTheUniversityofTexasatAustin,Humphreysandhisstudents—notablyJahshanBhattiandMatthewMurrian—undertook
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024适用型贷款利息合同书样本版
- 2025年度彩色印刷设备升级改造合同3篇
- 2024年度城市基础设施建设项目合同
- 二零二五年度绿色能源开发项目承包合同范本3篇
- 2025年度航空航天零部件定制设计与运输服务合同3篇
- 2024物业委托经营管理合同
- 2025年水果种植基地与冷链物流公司合作合同3篇
- 二零二五版科技型企业贷款合同中的物权担保与研发成果3篇
- 2025年蔬菜废弃物资源化利用合作合同3篇
- 二零二五年版市政工程招标投标合同模板3篇
- 物业民法典知识培训课件
- 2023年初中毕业生信息技术中考知识点详解
- 2024-2025学年山东省德州市高中五校高二上学期期中考试地理试题(解析版)
- 《万方数据资源介绍》课件
- 麻风病病情分析
- 《急诊科建设与设备配置标准》
- 第一章-地震工程学概论
- JJF(陕) 063-2021 漆膜冲击器校准规范
- TSGD7002-2023-压力管道元件型式试验规则
- 2024年度家庭医生签约服务培训课件
- 建筑工地节前停工安全检查表
评论
0/150
提交评论