




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NISTAdvancedManufacturingSeriesNISTAMS100-65
MetadataModelingforManufacturingEnterpriseIntegration
YanLu
BoonsermKulvatunyouDimitrijeMilenkovićJamesWilson
MichaelFiguraDavidNollerJoshKi
Thispublicationisavailablefreeofchargefrom:
/10.6028/NIST
.AMS.100-65
NISTAdvancedManufacturingSeriesNISTAMS100-65
MetadataModelingforManufacturingEnterpriseIntegration
YanLu
SystemIntegrationDivisionEngineeringLaboratory
NationalInstituteofStandardsandTechnology
JamesWilson
OpenApplicationGroup,Inc
MichaelFigura
OpenApplicationGroup,Inc
DavidNoller
VirginiaTech.University
BoonsermKulvatunyou
SystemIntegrationDivisionEngineeringLaboratory
NationalInstituteofStandardsandTechnology
DimitrijeMilenković*
SystemIntegrationDivisionEngineeringLaboratory
NationalInstituteofStandardsandTechnology
JoshKi
LockheedMartin
*FormerNISTGuestResearcher;allworkforthispublicationwasdonewhileatNIST.
Thispublicationisavailablefreeofchargefrom:
/10.6028/NIST
.AMS.100-65
January2025
U.S.DepartmentofCommerce
GinaM.Raimondo,Secretary
NationalInstituteofStandardsandTechnology
CharlesH.Romine,performingthenon-exclusivefunctionsanddutiesoftheUnderSecretaryofCommerceforStandardsandTechnologyandDirector,NationalInstituteofStandardsandTechnology
NISTAMS100-65January2025
Certainequipment,instruments,software,ormaterials,commercialornon-commercial,areidentifiedinthis
paperinordertospecifytheexperimentalprocedureadequately.Suchidentificationdoesnotimply
recommendationorendorsementofanyproductorservicebyNIST,nordoesitimplythatthematerialsorequipmentidentifiedarenecessarilythebestavailableforthepurpose.
NISTTechnicalSeriesPolicies
Copyright,Use,andLicensingStatements
NISTTechnicalSeriesPublicationIdentifierSyntax
PublicationHistory
ApprovedbytheNISTEditorialReviewBoardon2024-12-16
HowtoCitethisNISTTechnicalSeriesPublication
LuY,KulvatunyouB,MilenkovićD,WilsonJ,FiguraM,NollerD,KiJ(2024)MetadataModelingforManufacturing
EnterpriseIntegration,(NationalInstituteofStandardsandTechnology,Gaithersburg,MD)AdvancedManufacturingSeries(AMS)NISTAMS100-65.
/10.6028/NIST.AMS.100-65
AuthorORCIDiDs
YanLu:0000-0003-2927-5860
JamesWilson:0009-0001-9809-7212
BoonsermKulvatunyou:0000-0000-0000-0000
ContactInformation
yan.lu@
NISTAMS100-65January2025
i
Abstract
Thecontinuousdigitalizationinmanufacturingdirectlyleadstoasignificantincreasein"datavolume",whiledigitaltransformationisexpandingtheexchangescenariosofsuchdata.Managingmetadata,thedescriptionofdata,isafoundationalaspectofsuccessfulenterprisedigitaltransformation.Byprovidingclarityandstructureofdata,metadatamodelsandstandardsensurethatdatacanbediscovered,accessed,sharedandusedeffectivelyacrosstheorganization,drivingbetterdecision-making,improvingoperationalefficiency,andsupportingcompliance.Thisreportexaminescommonmanufacturingenterprisemetadataexchangescenarios,analyzesandcomparesexistingmetadatastandardsusingtheFindable,Accessible,InteroperableandReusable(FAIR)principles.BasedonthemetadatastandardsreviewedandaFAIRdatametadatastackmodel,weproposeauniform,general,andextendablemetadatamodelwhichnotonlycapturesessentialmetadataelementsforFindability,Accessibility,andInteroperabilitybutalsousesanextendablemetadatamodelfor(Re)usability.AnextensionoftheproposedUniformMetadataModelforManufacturingEnterpriseIntegrationisdemonstratedforindustrialmeasurementdatasetmetadatarepresentation.Additionalgeneralmetadataelementsareidentifiedformeasured,sampleddata,andderivedstreamdescriptions.Thereportconcludeswithadirectionformanufacturingmetadatastandardsdevelopment.
Keywords
Manufacturingenterprise,metadata,metadatamodeling,FAIRdata,dataexchange,digitaltransformation
NISTAMS100-65January2025
ii
TableofContents
1.Introduction 1
2.MetadataUseCasesandMetadataTypes 3
2.7.Generaldata-drivenmanufacturingenterpriseapplications8
3.ExistingMetadataStandards,Technology,andActivities 10
3.10.1.connectSpecMessageModel 21
3.10.2.ConnectSpecDatasetMetadatamodel 23
3.16.1.GoogleStorageMetadataModel 31
3.16.2.AmazonAWSmetadatadefinitions 32
4.MetadataModelMappingandAnalysis36
NISTAMS100-65January2025
iii
4.1.MetadaastandardsMapping.……………38
4.2.AuniformMetadataModel.….40
4.2.1.GeneralUMM4Meimetadataelements 41
4.3.MeladataModelforIndustrialDataset…….49
5.SummaryandConclusions 53
6.Reference 54
7.Appendix 57
71.A:Termsanddefnitions…….s7
72.AppendixB;Exemplarmetadatamapping……….59
NISTAMS100-65January2025
1
1.Introduction
Metadataisdatathatdefinesanddescribes“data”basedonISO/IEC197631,whiledataisdefinedasaformalizedrepresentationofinformationthatcanbeinterpreted,communicated,orprocessed.Thescopeofthe“data”tobeaddressedinthispaperincludespersistentdigitalobjectssuchasdesignmodels,images,measurementdatasets,machinelearningmodels,andmanufacturingandsupplychaindocuments,whicharecommoninmanufacturingenterprises.
Metadatamanagementisakeycomponentofdigitaltransformation
[1]
inthatitprovidesinformationaboutwhatadigitalobjectis,whereitcanbefound,whoitscreatorsare,howitwascreated,howitwasupdated,whatpartiesareauthorizedtoaccessit,etc.Businessuserswhoworkcloselywithdata(e.g.,analysts,datascientists,andITteams)relyonmetadatatogivethemcrucialcontextforderivinginsightsaboutvariousdataobjects.However,manyorganizationsdonotrecognizetheimportanceofmetadatamanagementforeffectivestrategicandtacticaldecision-making.Metadata-relatedcapabilitiesandpracticesthatareoftenlackingintheenterpriseinclude:
1)understandingofhowdatacanberepurposedandreused,
2)workflowsthatcollectmetadata,logmetadatacollection,andsupporttheexecutionofbusinessprocesses,
3)digitalrightsmanagement,includingauthorizationdelegation,
4)trustinthequalityofdataandmetadatafrombusinessparties,
5)interoperablemetadatadefinitionthatsupportsitssharing,and
6)technicalmechanismandtoolsformetadatacapture.
Standardmetadatamodelsandmodelingapproachesarekeytoimprovingmetadatamanagement,dataobjectusage,andaddressingthedeficiencieslistedabove.Well-developedmetadatamodelsspecifyrichmetadataelementsforvariousdataobjecttypes.Industriesfacechallengesinmetadatamodelingduetothevastvarietyofthedataobjecttypeswithinandacrossenterprises,andduetothenumberofmetadataelementsneededtosatisfyeverydatauseandexchangescenario.Therefore,aneffectivemetadatamodelingarchitectureisrequired.
Severalorganizations,includingInternationalOrganizationforStandardization(ISO)2,ObjectManagementGroup3,ResearchDataAlliance(RDA)4,andInternationalElectronicsCommission(IEC)5etc.,areworkingondigitalobjects,researchandscientificdata,andenterprisemetadatadefinitions.Morespecifically,ISO/IECJTC1/SC32/WG2wasestablishedin1998todevelopandmaintaindomain-agnosticstandardsthatfacilitatespecificationandmanagementofmetadata.Theirscopeincludesaframeworkforspecifyingandmanagingmetadata,anddetailedspecificationsonhowtodescribedataelements,valuedomains,andotherreusablesemanticandrepresentationalinformationobjectsaboutthemeaningandtechnicaldetailsofadataitem.
1
/standard/84749.html
2
/
3
4
/
5
https://www.iec.ch
NISTAMS100-65January2025
2
GOFAIRisabottom-up,stakeholder-drivenandself-governedinitiativestartedbytheOpenSciencecommunitythataimstoimplementtheFAIRdataprinciples,makingdataFindable,Accessible,InteroperableandReusabl
e[1].
ToimplementFAIR,the
ResearchMetadataSchemas
WorkingGroup
underRDA6aredevelopingguidelinesforthedata-sharingcommunitieswhoseneedsarenotaddressedbyexistingmetadataschemasuchas,andprovidesguidelinesonproposingextensions.Inaddition,therearemultipleinteroperability-basedstandardsdevelopmentorganizationsworkingonpromotingbusinessprocessinteroperabilityforbothinter-enterpriseandintra-enterprisebusinessprocessesbasedonopenstandardsandtool
s[17][18][19].
Forexample,connectSpec(formerly,OAGIS,
[2])
fromOAGi,anon-profitindustryconsortium,definesacommoncontentmodelandcommonmessagesforoperationalorengineeringinformationexchange.Thesestandardsandguidelinesgreatlyimproveenterprisebusiness-processintegration.
Meanwhile,enterprisemetadatamanagementsoftwareoptionsareincreasinginnumberandcapabilities.Theyprovidethetechnologynecessarytoensurethatthemetadataacrosstheenterpriseaddsvaluetothatenterprise’sdata.Themarketformetadatamanagementsolutionscomprisesvendorsthatincludeoneormanymetadatamanagementcapabilitiessuchasmetadatarepositories,businessglossary,datalineage,semanticmodeling,andmetadataingestionandtranslation.Metadatamanagementisalsotypicallyabuilt-infunctionindatacatalogs,datalakeproducts,anddatawarehouseproducts.However,thelackofstandardsleadstothedifficultyinintegratingmetadata-managementsoftwaretools.
Continuousdigitalizationanddigitaltransformationareexpandingenterpriseinformationexchangescenariosthatspanproductdata,processdatasets,andsupplychaindocuments.Thistechnicalreportaimstoprovideafoundationforenterprisemetadatastandardsdevelopment.Wefirstintroduceafewenterprise-dataobjectexchangeusecasesandtheirneedsofmetadatadata(Section2).Section3reviewsexistingstandardsformetadatamodelingandstate-of-artmetadatatechnology.InSection4wepresentaUniformMetadataModelingapproachforManufacturingEnterpriseIntegration,namedUMM4Mei.Itisanovel,extensible,hierarchicalmetadatamodelingapproachwhichcanbeusedforCADmodel,processdatasetandsupplychaindocumentmetadatamodeling.Section5concludesthepaperwithstandardsdevelopmentplan.
6
/groups/research-metadata-schemas-wg/members/all-members/
NISTAMS100-65January2025
3
2.MetadataUseCasesandMetadataTypes
Therearevarioususecasesofmetadatabymanufacturingenterprises,forproduct
development,productionsystemcontrol,operationandmaintenance,andsupplychain
management.Inthissection,somerepresentativedigitalobjecttypes,theirmetadataandassociatedusecasesaredescribed.
2.1.CADmodelmetadata
Three-dimensional(3D)CADmodelsarethedatasetthatcontains3Dgeometricelementsrepresentingtheobject/parttobemanufactured.CADModelscanbegeneratedbycommercialCADsolidmodelingsoftwaresuchasSolidWorks,NX,Creo,andAutoCAD.3DDesignistypicallyaniterativeprocessthatinvolvesmanyiterationsofrefinementsintheshapeanddimensionoftheinitialmodel.Itoutputsanoptimizedmodelaccordingtogivenobjectivesandboundaryconditionstomeetdesignrequirements.Designersfrequentlyusesimulationsduringthisprocesstovalidatedesignimprovements.
CADmodelscanbeexportedfromtheCADsoftwareinmanyformats.Someofthefileformatsarenativetothespecificprogrambutincludemoreinformationandfeatures.Somefileformatsareneutral,allowinginteroperabilityamongdifferentCADsoftware.UsingtheCADsoftware,userscanaddadditionalmetadatasuchasaTitle,Subject,Author,Keywordsandcommentsasfileproperties.Theycanalsoaddcustompropertiessuchasthedrawingnumberandrevision.Forexample,userscanaddmetadatatoanAUTOCADDWGfilewiththe‘DWGPROPS’function[4].Designintents,designrules,andvariousversionsoftheCADmodelsandthepedigreeinformationcanbecollectedandmanagedaswell.AdditionalmetadataforCADmodelsmakethemodelmoreusefulandcanbereusedbyvariousstakeholdersduringaproductlifecycle.
2.2.AgricultureMetadatausecases
Datageneratedbyglobalagriculturesystemsaretransformingfoodproductiontowardsasafe,sustainable,resilient,and
high-qualityfuture[3].
Industrybenefitsfromawarenessofandlinkagebetweenagriculturaldatasetsattheproducer/farmer,retailer,processorandup-anddownstreamchannelpartnerlevels.Supplychaintransparency,soundfarmbusinessmanagement,andconsumerconfidencethroughimprovedtraceabilityallrelyontheabilitytoclearlyandconsistentlylinkdata.AspecificusecaseistoprovidethestructuretolinksummarymetadataaboutCriticalTrackingEvents(CTE),suchthatrawdatacanbefoundforanalyse
s[4].
Metadatawilldescribetherawdataspecifictoitsscope,provideaURIlinktotherawdata,andpotentiallyknownrelatedpredecessormetadatathatmayexist.Agriculturedatasetmetadata:
●Allowsawarenessandlinkageofrelatedagriculturaldata,
●Addressesrealitythatindividualsworkingtosolveaspecificoftheagriculturalvaluechainoftenworkwithmorethanonedatarepository,
●Assistsinproductrecalls,traceability,andconsumerconfidence,and
●Enablesfarmerstosharetheirdatawithabest-of-breedtoolforgaininginsights.
NISTAMS100-65January2025
4
2.3.ProcessDataMetadataExchange
Industrialsystemsgeneratelargeamountsofprocessdata,whichusuallyareintimeseries,collected,storedandcanberetrievedfromthesoftwareknownashistorian.Processdatausuallydescribemeasurementsovertime,whichcapturethequantificationofattributesofamanufacturingobject,suchasequipment,partorprocess,oraneventonthatobject.
Processdataarethemostvaluableassetsformanufacturingandotherenterpriseperformanceimprovements.Theyofferinsightintohowasystemhasperformedandvariedovertimeandenableoperatorstomakedata-drivendecisions.Thedataareusuallyarchivedinalong-termhistorianthathelpstrack,overtime,manufacturingsystemproblemsandproductdefectscausedbytheproblems
[5].
Toidentifycausesofproductqualityproblemsorissueaproductrecall,thetimeseriesdatainhistoriansshouldbepackagedandsharedwithstakeholdersinthesupplychain
[6].
Metadataoffersinterpretabilityforinsightsfromprocessdataintoresolvingmanufacturingoperationproblemsoraidingenterprisedecisionmaking.However,metadataforprocessdataisachallengeinmanufacturingcontext,sincedataarenotstandardizedacrossduetoawiderangeofproducts,machinesandproductionlinesused.Amoreprecise,standardizeddescriptionofdataisessentialinordertoextractmeaningfulmetadatafromthedata.
Business
Planningand
Logistics
Manufacturing
Operationand
Control
ShortTerm
Historian
Trendeddata
S95Level0,1,2PLCDCSSCADA
fast
specific
Historian
Data
Abstraction
andConditioning
Models
and
Knowledge
ContinuousControl
S95Level3MES
S95Level4ERP
slow
abstract
DiscreteControl
BatchControl
Figure1.ProcessdataandISA95Hierarchy(Adaptedfrom[9])
TheISA95describestheflowofmanufacturingprocessdataasillustratedintheFigure1.Movingfromlowlevelstohigherlevels,dataarecompressed,aggregatedandabstractedfordecisionmaking.Thecontextofdatageneration,aswellasthepedigreeinformationaboutthedatatransformation,mustbecapturedfortheoperationalorbusinessintelligenceatLevel3and4,whicharespecifiedbytheISA95activitymodelandobjectmodel.ISA88capturessome
NISTAMS100-65January2025
5
metadataforprocessdataincludingtheirformats,associatedproductdata,materialdata,equipmentdata,personnel,otherprocessdataandbusinessdata.Themostimportantmetadataaretimeandlocation,whichplaceprocessmeasurementsincontextoftimeandspace.Thecombinationoftheprocessmodel,theequipmentmodelandtimecanputtimeseriesdataincontextofothereventsintheenterprise.Forexample,videodatacanbecombinedwithtimeseriesdatabyrepresentingthevideocameraintheequipmentmodelandcombiningthetimestampsfromthevideostreamandthetimeseriesdata.
Traditionally,ISA95equipmentmodelandISA88batchdatamodel,aswellasPACKML,OPCUAareusedfortransientdatamodelingandenablethedataexchangebetweenmachines,SCADAandMESorERPsystems.Insmartmanufacturing,machinelearningismorefrequentlyappliedtopersistentprocessdatastoredinclouds.Thesemachinelearningmodelsareusedforproduct/processdevelopmentorvaluechainoptimization,beyondtypicaloperationaluseinMESandERP.Thereisaneedtore-examinethemethodtomodelthemetadataforprocesstimeseriesdata.
2.4.SupplyChainMetadata
AsgoodsmovethroughtheSupplyChain,aplethoraofinformationaboutthegoods,custodyofthegoodsandmovement/handling(includingdivisionintoboxes,bottlesorpackagingintocartonsorpallets)ofthegoodsiscollectedalongtheway.Untilrecently,thisinformationwascollectedin“siloed”systemsownedbyvariousparticipantsinthesupplychain(e.g.themanufacturer,theshippingentity,orthereceivingentity).Thetrendtodayistowards“chainofcustody”systemsthatcangatherupmuchofthisinformationandstoreitinoneuniversallyavailablesystemsoastoprovidea“bigpicture”viewoftheinformation,namedmetadata.
Thedata(andmetadata)requirementsfor
“Provenance”
,or
“ChainofCustody”
forgoodsmovingthroughtheSupplyChainareclearlydifferentfroman
“opensupplychain”
(e.g.tosupportCloudManufacturing).
Considertheexampleofmovingfoodfromfarmtotable,asdescribedby
[9].
Figure2:TrackingFoodfromFarmtoTable
[9]
NISTAMS100-65January2025
6
ThefigureshowsthattherearetypicallymultiplepartnersinvolvedinsuchaSupplyChain,including,Farm,Packer,Transporter,Customs,Processor,DistributionCenters,RetailerandCustomer.
Potentially,allthesepartnersmayhavesiloedsystemscollectingdataontheirportion/involvementintheSupplyChainprocesses.Informationcollectedduringtheprocessincludes,forexample,PackingLists,BillofLading,TransportationDocuments,Exportlicense,Customsdocuments,Invoice,FreightBill,Waybills,Inspectiondocuments.Thesedocumentsinthesupplychainareimportantforcustomersandcanaffectthingslikeprice(Organicscommandahigherpricetoday,sometimesmuchhigher)andrecalls(itisimportanttoknowthesourceoffoodandwhereitwentforsituationslikerecallsinthecaseofcontamination).
Likewise,contractServiceLevelAgreements(SLAs)mayrequirespecifiedtimesfordelivery(toensurefreshness)andtemperaturecontrolaswell,soIoTdataandbusinesseventsareusedtocollectdatathatcanbeusedtohelpensureSLAcompliance.
Inordertounderstandmetadatarequirements,itisfirstnecessarytounderstandthedatacollectionrequirementsfortheusecase.Insummary,thefollowingcategoriesofdataarecollected:
1.BusinessEvents-includeseventssuchaspacking,unpacking,transportation,location,changeofcustody.ThesearetypicallycapturedviadigitalbusinesseventsbasedonstandardssuchasEDI,OAGISorGS1/EPCISwhichareself-describingevents(nometadatareallyrequiredoutsideoftheevents).
2.Documents-manydocumentsaregeneratedandexchangedduringthelifeofthefoodinthesupplychain,someofwhicharedescribedintheUseCaseDescriptionsection.Thesedocumentscanbepaperordigital(e.g.PDF,JPG)butmustbestoredinasecurewaytoensureprovenance/chainofcustodyforthegoods.Metadatarequiredherewouldinclude,forexample,CreationTimestamp,Format,DocumentID,DocumentType,Location,Creator,Device,EditsandURI.
3.IoTData(e.g.Temperature,Humidity,Velocity,Shock,Location).RequiredmetadataincludesDevice,Timestamp,DataType,Quantitykindandunit,andtheaboutness/contextofthedata,e.g.,containernumberorlocationfromwhichthedatawerecollected.
2.5.AdditiveManufacturingBigDataSetMetadata
Additivemanufacturing(AM)isasmartmanufacturingtechniquethatfabricatescomponentsdirectlyfrom3-Dmodelsbyselectivelypoint-to-pointorlayer-upon-layerjoiningmaterials.Differentfromthetraditionalsubtractivemanufacturing,avastvarietyofbigdatasetsare
generatedthroughAMdevelopmentlifecycles.Theamount(~TB),type(images),andspeed
(~GB/sec)ofthecollecteddataareunprecedented.ThedatasetsarecreatedandcollectedtocaptureandcharacterizevariousfactorsthatcouldaffectAMpartquality,includingthosefrommaterialdesign,machineandprocessdevelopment,andprocessmonitoringandcontrol,as
wellaspartinspectionandtesting.Inthedetailsoftheseactivities,alargerangeofoverlappingdataneedsexistthatmaybenefitfromsharingandreusingdata.
NISTAMS100-65January2025
7
Figure3:AMdatasetandusescenarios.
AsshowninFigure3,designdata,machinedata,in-processmonitoringdata,aswellasmeasurementsfrommaterialcharacterization,inspectionandtestarecommonacrossmanyAMactivities.Threecategoriesofdata-drivenAMengineeringdecisionsexist:AMprocessmonitoringandcontrol,AMpartqualificationanddevelopment,andAMprocess,machineandmaterialqualificationanddevelopment.Thelatterdecisionscanrelyonabroadspectrumofdatabeyondindividualstakeholder’sdatagenerationcapability.Forexample,in-processmonitoringdatageneratedforpartqualitycontrolcanbeusedformaterialandmachinepropertyunderstandingandreducetheneedforexperimentsbythematerialandmachinevendorsformaterialandmachinedevelopment.
Toenhancetheusabilityandreusabilityofthedatasets,metadata,“descriptionofdata”,mustbecollectedandaccessiblebyAMecosystemusers.TheAMmetadatashouldbeorganizedtosupporton-demanddatadiscoveryandretrieval,aswellasdataexchange.Forbigdata,especiallythosefromin-processmonitoringorstructureinspection,metadataisrequiredtosupportpartialdataretrieval,e.g.,locatingdatabasedonmaterial,process,partcriticalityand(in-process/NDT)datatype,retrievethein-processmonitoringdataforthefirst5layersandthelastfivelayersforaspecificpart.FivetypesofmetadataareidentifiedforAMbigdataobjects,includinggeneraldescription,activityrelatedinformation,instrumentrelatedinformationandmeasurementrelatedinformation.
2.6.BioPharma
Pharmaceuticalproductlifecycleincludesdrugdevelopment,clinicaltrial,regulatoryfiling,processdevelopment(scaleupanddrugproductdesign),production,anddisposal.Allthese
NISTAMS100-65January2025
8
lifecyclestagesgeneratealotofdata.Supplychain,logistics,andtraceabilityarealsoimportantactivitiesandcanalsogeneratemoredata.
Takingtheproductionlifecyclestageasanexample,thewholepharmaindustryismovingfrombatchtowardcontinuousmanufacturingbecauseofpotentialbenefitssuchassmallercapitalinvestment,smallerfootprint,easiertoscaleup,lowerriskofwaste,moresuitablefordistributedmanufacturing.However,theprocesscontrolincontinuousmanufacturingismorecomplexbecauseitneedsaholisticcontrolmodelinsteadofindividualcontrolforeachunitoperation.Thatmeansthenumberofprocessparametersisatleastamultiplicationofallunitoperationscombinedandusingafeedbackcontrolorobtainingamechanisticcontrolmodelisratherdifficult.Scientistshavetorelyonadata-drivenorhybridcontrolmodel.Whiledata-drivencontrolcanbeusedtoimproveperformanceinbatchmanufacturing,scientistsandprocessengineershavetostitchrelevantdatasetstogethertodevelopacontrolmodelforcontinuousmanufacturing.
Metadataareneededtohelpscientistsretrievedatasetsaboutthesameorsimilardrugsubstanceanddrugproductsandtheirrelatedbatchrunstocreateadata-drivencontrolmodel.Metadataisalsorequiredforscientiststoperformprocessscaleupeffectivelyaswellastofigureouthowdatafromsmallerscalescanbeutilizedtoimprove(train/pre-train)thecontrolmodel.Finally,metadataplaysapivotalroleforregulatoryfilingasithelpsensuretraceabilityandintegrityofthedatasets.Examplemetadataarebatchidentifier,drugsubstance,drugproduct,deviceid,timeoflastcalibration,referencematerialusedandbatchcontrolrecipe.Whilethebatchcontrolrecipeisthekeytootherdataelementsrelevanttoanalyticalmodeling,selecteddataelementsmaybehelpfulforscientiststofindandreusedatabetter.Examplesofthesedataelementsmaybethecriticalqualityattributes,criticalprocesscontrolparametersandkeyperformanceindicators.
Theexemplarymetadataelementsgivenaboveareessentialforprocessdevelopmentandmanufacturingcontrol.Whenconsideringotherlifecycleactivities,additionalmetadataelementsmaybeidentified.
2.7.Generaldata-drivenmanufacturingenterpriseapplications
Tosummarize,metadataanddataobjectsplayanimportantroleinindustrialdecisionmaking.Whiletheusecasesdescribedabovereflectvariouslevelsofuseofdigitalobjectmetadataformanufacturingenterpriseapplications,thefigurebelow,theCRISPframework,summarizestheroleofmetadataindata-drivenindustrialdecision-makingprocessesforsmartmanufacturing.
NISTAMS100-65January2025
9
Figure4:CRISPframeworkfordata-drivenbusinessapplications
[7]
InFigure4,amongthesixphasestacklingdata-drivenproblemsinvar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出租车客运服务承包与大数据分析协议
- 生态农业园区场地租赁及农产品销售合作协议
- 车辆运输安全培训与咨询承包协议
- 车辆过户手续全权委托合同样本
- 特色餐饮厨师定制合同书
- 车辆托管与汽车保险代理合作协议
- 车辆维修费用赔偿与保险理赔协议
- 会说话的动物课件
- 生命教育主题班会
- 护士外出培训
- 医院收款室岗位职责
- 《安全吊装作业培训》课件
- 分析化学知到智慧树章节测试课后答案2024年秋海南大学
- 开封市第二届职业技能大赛工业4.0项目技术文件(世赛选拔项目)
- 形势与政策(贵州财经大学)知到智慧树章节答案
- 2024江苏社区工作者试题汇编
- 第四单元《遵守法律规范》测试卷-高二思想政治课《职业道德与法治》附答案
- 工贸行业法律法规清单法规清单
- 物业服务品质提升培训
- 中国执业医师法课件
- 申论大学生村官考试试题及答案指导(2025年)
评论
0/150
提交评论