nist -制造业企业集成的元数据建模 Metadata Modeling for Manufacturing Enterprise Integration_第1页
nist -制造业企业集成的元数据建模 Metadata Modeling for Manufacturing Enterprise Integration_第2页
nist -制造业企业集成的元数据建模 Metadata Modeling for Manufacturing Enterprise Integration_第3页
nist -制造业企业集成的元数据建模 Metadata Modeling for Manufacturing Enterprise Integration_第4页
nist -制造业企业集成的元数据建模 Metadata Modeling for Manufacturing Enterprise Integration_第5页
已阅读5页,还剩106页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

NISTAdvancedManufacturingSeriesNISTAMS100-65

MetadataModelingforManufacturingEnterpriseIntegration

YanLu

BoonsermKulvatunyouDimitrijeMilenkovićJamesWilson

MichaelFiguraDavidNollerJoshKi

Thispublicationisavailablefreeofchargefrom:

/10.6028/NIST

.AMS.100-65

NISTAdvancedManufacturingSeriesNISTAMS100-65

MetadataModelingforManufacturingEnterpriseIntegration

YanLu

SystemIntegrationDivisionEngineeringLaboratory

NationalInstituteofStandardsandTechnology

JamesWilson

OpenApplicationGroup,Inc

MichaelFigura

OpenApplicationGroup,Inc

DavidNoller

VirginiaTech.University

BoonsermKulvatunyou

SystemIntegrationDivisionEngineeringLaboratory

NationalInstituteofStandardsandTechnology

DimitrijeMilenković*

SystemIntegrationDivisionEngineeringLaboratory

NationalInstituteofStandardsandTechnology

JoshKi

LockheedMartin

*FormerNISTGuestResearcher;allworkforthispublicationwasdonewhileatNIST.

Thispublicationisavailablefreeofchargefrom:

/10.6028/NIST

.AMS.100-65

January2025

U.S.DepartmentofCommerce

GinaM.Raimondo,Secretary

NationalInstituteofStandardsandTechnology

CharlesH.Romine,performingthenon-exclusivefunctionsanddutiesoftheUnderSecretaryofCommerceforStandardsandTechnologyandDirector,NationalInstituteofStandardsandTechnology

NISTAMS100-65January2025

Certainequipment,instruments,software,ormaterials,commercialornon-commercial,areidentifiedinthis

paperinordertospecifytheexperimentalprocedureadequately.Suchidentificationdoesnotimply

recommendationorendorsementofanyproductorservicebyNIST,nordoesitimplythatthematerialsorequipmentidentifiedarenecessarilythebestavailableforthepurpose.

NISTTechnicalSeriesPolicies

Copyright,Use,andLicensingStatements

NISTTechnicalSeriesPublicationIdentifierSyntax

PublicationHistory

ApprovedbytheNISTEditorialReviewBoardon2024-12-16

HowtoCitethisNISTTechnicalSeriesPublication

LuY,KulvatunyouB,MilenkovićD,WilsonJ,FiguraM,NollerD,KiJ(2024)MetadataModelingforManufacturing

EnterpriseIntegration,(NationalInstituteofStandardsandTechnology,Gaithersburg,MD)AdvancedManufacturingSeries(AMS)NISTAMS100-65.

/10.6028/NIST.AMS.100-65

AuthorORCIDiDs

YanLu:0000-0003-2927-5860

JamesWilson:0009-0001-9809-7212

BoonsermKulvatunyou:0000-0000-0000-0000

ContactInformation

yan.lu@

NISTAMS100-65January2025

i

Abstract

Thecontinuousdigitalizationinmanufacturingdirectlyleadstoasignificantincreasein"datavolume",whiledigitaltransformationisexpandingtheexchangescenariosofsuchdata.Managingmetadata,thedescriptionofdata,isafoundationalaspectofsuccessfulenterprisedigitaltransformation.Byprovidingclarityandstructureofdata,metadatamodelsandstandardsensurethatdatacanbediscovered,accessed,sharedandusedeffectivelyacrosstheorganization,drivingbetterdecision-making,improvingoperationalefficiency,andsupportingcompliance.Thisreportexaminescommonmanufacturingenterprisemetadataexchangescenarios,analyzesandcomparesexistingmetadatastandardsusingtheFindable,Accessible,InteroperableandReusable(FAIR)principles.BasedonthemetadatastandardsreviewedandaFAIRdatametadatastackmodel,weproposeauniform,general,andextendablemetadatamodelwhichnotonlycapturesessentialmetadataelementsforFindability,Accessibility,andInteroperabilitybutalsousesanextendablemetadatamodelfor(Re)usability.AnextensionoftheproposedUniformMetadataModelforManufacturingEnterpriseIntegrationisdemonstratedforindustrialmeasurementdatasetmetadatarepresentation.Additionalgeneralmetadataelementsareidentifiedformeasured,sampleddata,andderivedstreamdescriptions.Thereportconcludeswithadirectionformanufacturingmetadatastandardsdevelopment.

Keywords

Manufacturingenterprise,metadata,metadatamodeling,FAIRdata,dataexchange,digitaltransformation

NISTAMS100-65January2025

ii

TableofContents

1.Introduction 1

2.MetadataUseCasesandMetadataTypes 3

2.7.Generaldata-drivenmanufacturingenterpriseapplications8

3.ExistingMetadataStandards,Technology,andActivities 10

3.10.1.connectSpecMessageModel 21

3.10.2.ConnectSpecDatasetMetadatamodel 23

3.16.1.GoogleStorageMetadataModel 31

3.16.2.AmazonAWSmetadatadefinitions 32

4.MetadataModelMappingandAnalysis36

NISTAMS100-65January2025

iii

4.1.MetadaastandardsMapping.……………38

4.2.AuniformMetadataModel.….40

4.2.1.GeneralUMM4Meimetadataelements 41

4.3.MeladataModelforIndustrialDataset…….49

5.SummaryandConclusions 53

6.Reference 54

7.Appendix 57

71.A:Termsanddefnitions…….s7

72.AppendixB;Exemplarmetadatamapping……….59

NISTAMS100-65January2025

1

1.Introduction

Metadataisdatathatdefinesanddescribes“data”basedonISO/IEC197631,whiledataisdefinedasaformalizedrepresentationofinformationthatcanbeinterpreted,communicated,orprocessed.Thescopeofthe“data”tobeaddressedinthispaperincludespersistentdigitalobjectssuchasdesignmodels,images,measurementdatasets,machinelearningmodels,andmanufacturingandsupplychaindocuments,whicharecommoninmanufacturingenterprises.

Metadatamanagementisakeycomponentofdigitaltransformation

[1]

inthatitprovidesinformationaboutwhatadigitalobjectis,whereitcanbefound,whoitscreatorsare,howitwascreated,howitwasupdated,whatpartiesareauthorizedtoaccessit,etc.Businessuserswhoworkcloselywithdata(e.g.,analysts,datascientists,andITteams)relyonmetadatatogivethemcrucialcontextforderivinginsightsaboutvariousdataobjects.However,manyorganizationsdonotrecognizetheimportanceofmetadatamanagementforeffectivestrategicandtacticaldecision-making.Metadata-relatedcapabilitiesandpracticesthatareoftenlackingintheenterpriseinclude:

1)understandingofhowdatacanberepurposedandreused,

2)workflowsthatcollectmetadata,logmetadatacollection,andsupporttheexecutionofbusinessprocesses,

3)digitalrightsmanagement,includingauthorizationdelegation,

4)trustinthequalityofdataandmetadatafrombusinessparties,

5)interoperablemetadatadefinitionthatsupportsitssharing,and

6)technicalmechanismandtoolsformetadatacapture.

Standardmetadatamodelsandmodelingapproachesarekeytoimprovingmetadatamanagement,dataobjectusage,andaddressingthedeficiencieslistedabove.Well-developedmetadatamodelsspecifyrichmetadataelementsforvariousdataobjecttypes.Industriesfacechallengesinmetadatamodelingduetothevastvarietyofthedataobjecttypeswithinandacrossenterprises,andduetothenumberofmetadataelementsneededtosatisfyeverydatauseandexchangescenario.Therefore,aneffectivemetadatamodelingarchitectureisrequired.

Severalorganizations,includingInternationalOrganizationforStandardization(ISO)2,ObjectManagementGroup3,ResearchDataAlliance(RDA)4,andInternationalElectronicsCommission(IEC)5etc.,areworkingondigitalobjects,researchandscientificdata,andenterprisemetadatadefinitions.Morespecifically,ISO/IECJTC1/SC32/WG2wasestablishedin1998todevelopandmaintaindomain-agnosticstandardsthatfacilitatespecificationandmanagementofmetadata.Theirscopeincludesaframeworkforspecifyingandmanagingmetadata,anddetailedspecificationsonhowtodescribedataelements,valuedomains,andotherreusablesemanticandrepresentationalinformationobjectsaboutthemeaningandtechnicaldetailsofadataitem.

1

/standard/84749.html

2

/

3

4

/

5

https://www.iec.ch

NISTAMS100-65January2025

2

GOFAIRisabottom-up,stakeholder-drivenandself-governedinitiativestartedbytheOpenSciencecommunitythataimstoimplementtheFAIRdataprinciples,makingdataFindable,Accessible,InteroperableandReusabl

e[1].

ToimplementFAIR,the

ResearchMetadataSchemas

WorkingGroup

underRDA6aredevelopingguidelinesforthedata-sharingcommunitieswhoseneedsarenotaddressedbyexistingmetadataschemasuchas,andprovidesguidelinesonproposingextensions.Inaddition,therearemultipleinteroperability-basedstandardsdevelopmentorganizationsworkingonpromotingbusinessprocessinteroperabilityforbothinter-enterpriseandintra-enterprisebusinessprocessesbasedonopenstandardsandtool

s[17][18][19].

Forexample,connectSpec(formerly,OAGIS,

[2])

fromOAGi,anon-profitindustryconsortium,definesacommoncontentmodelandcommonmessagesforoperationalorengineeringinformationexchange.Thesestandardsandguidelinesgreatlyimproveenterprisebusiness-processintegration.

Meanwhile,enterprisemetadatamanagementsoftwareoptionsareincreasinginnumberandcapabilities.Theyprovidethetechnologynecessarytoensurethatthemetadataacrosstheenterpriseaddsvaluetothatenterprise’sdata.Themarketformetadatamanagementsolutionscomprisesvendorsthatincludeoneormanymetadatamanagementcapabilitiessuchasmetadatarepositories,businessglossary,datalineage,semanticmodeling,andmetadataingestionandtranslation.Metadatamanagementisalsotypicallyabuilt-infunctionindatacatalogs,datalakeproducts,anddatawarehouseproducts.However,thelackofstandardsleadstothedifficultyinintegratingmetadata-managementsoftwaretools.

Continuousdigitalizationanddigitaltransformationareexpandingenterpriseinformationexchangescenariosthatspanproductdata,processdatasets,andsupplychaindocuments.Thistechnicalreportaimstoprovideafoundationforenterprisemetadatastandardsdevelopment.Wefirstintroduceafewenterprise-dataobjectexchangeusecasesandtheirneedsofmetadatadata(Section2).Section3reviewsexistingstandardsformetadatamodelingandstate-of-artmetadatatechnology.InSection4wepresentaUniformMetadataModelingapproachforManufacturingEnterpriseIntegration,namedUMM4Mei.Itisanovel,extensible,hierarchicalmetadatamodelingapproachwhichcanbeusedforCADmodel,processdatasetandsupplychaindocumentmetadatamodeling.Section5concludesthepaperwithstandardsdevelopmentplan.

6

/groups/research-metadata-schemas-wg/members/all-members/

NISTAMS100-65January2025

3

2.MetadataUseCasesandMetadataTypes

Therearevarioususecasesofmetadatabymanufacturingenterprises,forproduct

development,productionsystemcontrol,operationandmaintenance,andsupplychain

management.Inthissection,somerepresentativedigitalobjecttypes,theirmetadataandassociatedusecasesaredescribed.

2.1.CADmodelmetadata

Three-dimensional(3D)CADmodelsarethedatasetthatcontains3Dgeometricelementsrepresentingtheobject/parttobemanufactured.CADModelscanbegeneratedbycommercialCADsolidmodelingsoftwaresuchasSolidWorks,NX,Creo,andAutoCAD.3DDesignistypicallyaniterativeprocessthatinvolvesmanyiterationsofrefinementsintheshapeanddimensionoftheinitialmodel.Itoutputsanoptimizedmodelaccordingtogivenobjectivesandboundaryconditionstomeetdesignrequirements.Designersfrequentlyusesimulationsduringthisprocesstovalidatedesignimprovements.

CADmodelscanbeexportedfromtheCADsoftwareinmanyformats.Someofthefileformatsarenativetothespecificprogrambutincludemoreinformationandfeatures.Somefileformatsareneutral,allowinginteroperabilityamongdifferentCADsoftware.UsingtheCADsoftware,userscanaddadditionalmetadatasuchasaTitle,Subject,Author,Keywordsandcommentsasfileproperties.Theycanalsoaddcustompropertiessuchasthedrawingnumberandrevision.Forexample,userscanaddmetadatatoanAUTOCADDWGfilewiththe‘DWGPROPS’function[4].Designintents,designrules,andvariousversionsoftheCADmodelsandthepedigreeinformationcanbecollectedandmanagedaswell.AdditionalmetadataforCADmodelsmakethemodelmoreusefulandcanbereusedbyvariousstakeholdersduringaproductlifecycle.

2.2.AgricultureMetadatausecases

Datageneratedbyglobalagriculturesystemsaretransformingfoodproductiontowardsasafe,sustainable,resilient,and

high-qualityfuture[3].

Industrybenefitsfromawarenessofandlinkagebetweenagriculturaldatasetsattheproducer/farmer,retailer,processorandup-anddownstreamchannelpartnerlevels.Supplychaintransparency,soundfarmbusinessmanagement,andconsumerconfidencethroughimprovedtraceabilityallrelyontheabilitytoclearlyandconsistentlylinkdata.AspecificusecaseistoprovidethestructuretolinksummarymetadataaboutCriticalTrackingEvents(CTE),suchthatrawdatacanbefoundforanalyse

s[4].

Metadatawilldescribetherawdataspecifictoitsscope,provideaURIlinktotherawdata,andpotentiallyknownrelatedpredecessormetadatathatmayexist.Agriculturedatasetmetadata:

●Allowsawarenessandlinkageofrelatedagriculturaldata,

●Addressesrealitythatindividualsworkingtosolveaspecificoftheagriculturalvaluechainoftenworkwithmorethanonedatarepository,

●Assistsinproductrecalls,traceability,andconsumerconfidence,and

●Enablesfarmerstosharetheirdatawithabest-of-breedtoolforgaininginsights.

NISTAMS100-65January2025

4

2.3.ProcessDataMetadataExchange

Industrialsystemsgeneratelargeamountsofprocessdata,whichusuallyareintimeseries,collected,storedandcanberetrievedfromthesoftwareknownashistorian.Processdatausuallydescribemeasurementsovertime,whichcapturethequantificationofattributesofamanufacturingobject,suchasequipment,partorprocess,oraneventonthatobject.

Processdataarethemostvaluableassetsformanufacturingandotherenterpriseperformanceimprovements.Theyofferinsightintohowasystemhasperformedandvariedovertimeandenableoperatorstomakedata-drivendecisions.Thedataareusuallyarchivedinalong-termhistorianthathelpstrack,overtime,manufacturingsystemproblemsandproductdefectscausedbytheproblems

[5].

Toidentifycausesofproductqualityproblemsorissueaproductrecall,thetimeseriesdatainhistoriansshouldbepackagedandsharedwithstakeholdersinthesupplychain

[6].

Metadataoffersinterpretabilityforinsightsfromprocessdataintoresolvingmanufacturingoperationproblemsoraidingenterprisedecisionmaking.However,metadataforprocessdataisachallengeinmanufacturingcontext,sincedataarenotstandardizedacrossduetoawiderangeofproducts,machinesandproductionlinesused.Amoreprecise,standardizeddescriptionofdataisessentialinordertoextractmeaningfulmetadatafromthedata.

Business

Planningand

Logistics

Manufacturing

Operationand

Control

ShortTerm

Historian

Trendeddata

S95Level0,1,2PLCDCSSCADA

fast

specific

Historian

Data

Abstraction

andConditioning

Models

and

Knowledge

ContinuousControl

S95Level3MES

S95Level4ERP

slow

abstract

DiscreteControl

BatchControl

Figure1.ProcessdataandISA95Hierarchy(Adaptedfrom[9])

TheISA95describestheflowofmanufacturingprocessdataasillustratedintheFigure1.Movingfromlowlevelstohigherlevels,dataarecompressed,aggregatedandabstractedfordecisionmaking.Thecontextofdatageneration,aswellasthepedigreeinformationaboutthedatatransformation,mustbecapturedfortheoperationalorbusinessintelligenceatLevel3and4,whicharespecifiedbytheISA95activitymodelandobjectmodel.ISA88capturessome

NISTAMS100-65January2025

5

metadataforprocessdataincludingtheirformats,associatedproductdata,materialdata,equipmentdata,personnel,otherprocessdataandbusinessdata.Themostimportantmetadataaretimeandlocation,whichplaceprocessmeasurementsincontextoftimeandspace.Thecombinationoftheprocessmodel,theequipmentmodelandtimecanputtimeseriesdataincontextofothereventsintheenterprise.Forexample,videodatacanbecombinedwithtimeseriesdatabyrepresentingthevideocameraintheequipmentmodelandcombiningthetimestampsfromthevideostreamandthetimeseriesdata.

Traditionally,ISA95equipmentmodelandISA88batchdatamodel,aswellasPACKML,OPCUAareusedfortransientdatamodelingandenablethedataexchangebetweenmachines,SCADAandMESorERPsystems.Insmartmanufacturing,machinelearningismorefrequentlyappliedtopersistentprocessdatastoredinclouds.Thesemachinelearningmodelsareusedforproduct/processdevelopmentorvaluechainoptimization,beyondtypicaloperationaluseinMESandERP.Thereisaneedtore-examinethemethodtomodelthemetadataforprocesstimeseriesdata.

2.4.SupplyChainMetadata

AsgoodsmovethroughtheSupplyChain,aplethoraofinformationaboutthegoods,custodyofthegoodsandmovement/handling(includingdivisionintoboxes,bottlesorpackagingintocartonsorpallets)ofthegoodsiscollectedalongtheway.Untilrecently,thisinformationwascollectedin“siloed”systemsownedbyvariousparticipantsinthesupplychain(e.g.themanufacturer,theshippingentity,orthereceivingentity).Thetrendtodayistowards“chainofcustody”systemsthatcangatherupmuchofthisinformationandstoreitinoneuniversallyavailablesystemsoastoprovidea“bigpicture”viewoftheinformation,namedmetadata.

Thedata(andmetadata)requirementsfor

“Provenance”

,or

“ChainofCustody”

forgoodsmovingthroughtheSupplyChainareclearlydifferentfroman

“opensupplychain”

(e.g.tosupportCloudManufacturing).

Considertheexampleofmovingfoodfromfarmtotable,asdescribedby

[9].

Figure2:TrackingFoodfromFarmtoTable

[9]

NISTAMS100-65January2025

6

ThefigureshowsthattherearetypicallymultiplepartnersinvolvedinsuchaSupplyChain,including,Farm,Packer,Transporter,Customs,Processor,DistributionCenters,RetailerandCustomer.

Potentially,allthesepartnersmayhavesiloedsystemscollectingdataontheirportion/involvementintheSupplyChainprocesses.Informationcollectedduringtheprocessincludes,forexample,PackingLists,BillofLading,TransportationDocuments,Exportlicense,Customsdocuments,Invoice,FreightBill,Waybills,Inspectiondocuments.Thesedocumentsinthesupplychainareimportantforcustomersandcanaffectthingslikeprice(Organicscommandahigherpricetoday,sometimesmuchhigher)andrecalls(itisimportanttoknowthesourceoffoodandwhereitwentforsituationslikerecallsinthecaseofcontamination).

Likewise,contractServiceLevelAgreements(SLAs)mayrequirespecifiedtimesfordelivery(toensurefreshness)andtemperaturecontrolaswell,soIoTdataandbusinesseventsareusedtocollectdatathatcanbeusedtohelpensureSLAcompliance.

Inordertounderstandmetadatarequirements,itisfirstnecessarytounderstandthedatacollectionrequirementsfortheusecase.Insummary,thefollowingcategoriesofdataarecollected:

1.BusinessEvents-includeseventssuchaspacking,unpacking,transportation,location,changeofcustody.ThesearetypicallycapturedviadigitalbusinesseventsbasedonstandardssuchasEDI,OAGISorGS1/EPCISwhichareself-describingevents(nometadatareallyrequiredoutsideoftheevents).

2.Documents-manydocumentsaregeneratedandexchangedduringthelifeofthefoodinthesupplychain,someofwhicharedescribedintheUseCaseDescriptionsection.Thesedocumentscanbepaperordigital(e.g.PDF,JPG)butmustbestoredinasecurewaytoensureprovenance/chainofcustodyforthegoods.Metadatarequiredherewouldinclude,forexample,CreationTimestamp,Format,DocumentID,DocumentType,Location,Creator,Device,EditsandURI.

3.IoTData(e.g.Temperature,Humidity,Velocity,Shock,Location).RequiredmetadataincludesDevice,Timestamp,DataType,Quantitykindandunit,andtheaboutness/contextofthedata,e.g.,containernumberorlocationfromwhichthedatawerecollected.

2.5.AdditiveManufacturingBigDataSetMetadata

Additivemanufacturing(AM)isasmartmanufacturingtechniquethatfabricatescomponentsdirectlyfrom3-Dmodelsbyselectivelypoint-to-pointorlayer-upon-layerjoiningmaterials.Differentfromthetraditionalsubtractivemanufacturing,avastvarietyofbigdatasetsare

generatedthroughAMdevelopmentlifecycles.Theamount(~TB),type(images),andspeed

(~GB/sec)ofthecollecteddataareunprecedented.ThedatasetsarecreatedandcollectedtocaptureandcharacterizevariousfactorsthatcouldaffectAMpartquality,includingthosefrommaterialdesign,machineandprocessdevelopment,andprocessmonitoringandcontrol,as

wellaspartinspectionandtesting.Inthedetailsoftheseactivities,alargerangeofoverlappingdataneedsexistthatmaybenefitfromsharingandreusingdata.

NISTAMS100-65January2025

7

Figure3:AMdatasetandusescenarios.

AsshowninFigure3,designdata,machinedata,in-processmonitoringdata,aswellasmeasurementsfrommaterialcharacterization,inspectionandtestarecommonacrossmanyAMactivities.Threecategoriesofdata-drivenAMengineeringdecisionsexist:AMprocessmonitoringandcontrol,AMpartqualificationanddevelopment,andAMprocess,machineandmaterialqualificationanddevelopment.Thelatterdecisionscanrelyonabroadspectrumofdatabeyondindividualstakeholder’sdatagenerationcapability.Forexample,in-processmonitoringdatageneratedforpartqualitycontrolcanbeusedformaterialandmachinepropertyunderstandingandreducetheneedforexperimentsbythematerialandmachinevendorsformaterialandmachinedevelopment.

Toenhancetheusabilityandreusabilityofthedatasets,metadata,“descriptionofdata”,mustbecollectedandaccessiblebyAMecosystemusers.TheAMmetadatashouldbeorganizedtosupporton-demanddatadiscoveryandretrieval,aswellasdataexchange.Forbigdata,especiallythosefromin-processmonitoringorstructureinspection,metadataisrequiredtosupportpartialdataretrieval,e.g.,locatingdatabasedonmaterial,process,partcriticalityand(in-process/NDT)datatype,retrievethein-processmonitoringdataforthefirst5layersandthelastfivelayersforaspecificpart.FivetypesofmetadataareidentifiedforAMbigdataobjects,includinggeneraldescription,activityrelatedinformation,instrumentrelatedinformationandmeasurementrelatedinformation.

2.6.BioPharma

Pharmaceuticalproductlifecycleincludesdrugdevelopment,clinicaltrial,regulatoryfiling,processdevelopment(scaleupanddrugproductdesign),production,anddisposal.Allthese

NISTAMS100-65January2025

8

lifecyclestagesgeneratealotofdata.Supplychain,logistics,andtraceabilityarealsoimportantactivitiesandcanalsogeneratemoredata.

Takingtheproductionlifecyclestageasanexample,thewholepharmaindustryismovingfrombatchtowardcontinuousmanufacturingbecauseofpotentialbenefitssuchassmallercapitalinvestment,smallerfootprint,easiertoscaleup,lowerriskofwaste,moresuitablefordistributedmanufacturing.However,theprocesscontrolincontinuousmanufacturingismorecomplexbecauseitneedsaholisticcontrolmodelinsteadofindividualcontrolforeachunitoperation.Thatmeansthenumberofprocessparametersisatleastamultiplicationofallunitoperationscombinedandusingafeedbackcontrolorobtainingamechanisticcontrolmodelisratherdifficult.Scientistshavetorelyonadata-drivenorhybridcontrolmodel.Whiledata-drivencontrolcanbeusedtoimproveperformanceinbatchmanufacturing,scientistsandprocessengineershavetostitchrelevantdatasetstogethertodevelopacontrolmodelforcontinuousmanufacturing.

Metadataareneededtohelpscientistsretrievedatasetsaboutthesameorsimilardrugsubstanceanddrugproductsandtheirrelatedbatchrunstocreateadata-drivencontrolmodel.Metadataisalsorequiredforscientiststoperformprocessscaleupeffectivelyaswellastofigureouthowdatafromsmallerscalescanbeutilizedtoimprove(train/pre-train)thecontrolmodel.Finally,metadataplaysapivotalroleforregulatoryfilingasithelpsensuretraceabilityandintegrityofthedatasets.Examplemetadataarebatchidentifier,drugsubstance,drugproduct,deviceid,timeoflastcalibration,referencematerialusedandbatchcontrolrecipe.Whilethebatchcontrolrecipeisthekeytootherdataelementsrelevanttoanalyticalmodeling,selecteddataelementsmaybehelpfulforscientiststofindandreusedatabetter.Examplesofthesedataelementsmaybethecriticalqualityattributes,criticalprocesscontrolparametersandkeyperformanceindicators.

Theexemplarymetadataelementsgivenaboveareessentialforprocessdevelopmentandmanufacturingcontrol.Whenconsideringotherlifecycleactivities,additionalmetadataelementsmaybeidentified.

2.7.Generaldata-drivenmanufacturingenterpriseapplications

Tosummarize,metadataanddataobjectsplayanimportantroleinindustrialdecisionmaking.Whiletheusecasesdescribedabovereflectvariouslevelsofuseofdigitalobjectmetadataformanufacturingenterpriseapplications,thefigurebelow,theCRISPframework,summarizestheroleofmetadataindata-drivenindustrialdecision-makingprocessesforsmartmanufacturing.

NISTAMS100-65January2025

9

Figure4:CRISPframeworkfordata-drivenbusinessapplications

[7]

InFigure4,amongthesixphasestacklingdata-drivenproblemsinvar

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论