版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲合情推理与演绎推理[最新考纲]1.了解合情推理的含义,能利用归纳和类比等进行简洁的推理,了解合情推理在数学发觉中的作用.2.了解演绎推理的重要性,把握演绎推理的基本模式,并能运用它们进行一些简洁推理.3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.简言之,类比推理是由特殊到特殊的推理.(3)合情推理:归纳推理和类比推理都是依据已有的事实,经过观看、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理:从一般性的原理动身,推出某个特殊状况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所争辩的特殊状况;③结论——依据一般原理,对特殊状况作出的推断.辨析感悟1.对合情推理的生疏(1)归纳推理得到的结论不肯定正确,类比推理得到的结论肯定正确.(×)(2)由平面三角形的性质推想空间四周体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)(教材习题改编)一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N*).(×)(5)(2022·安庆调研改编)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四周体的棱长比为1∶2,则它们的体积比为1∶8.(√)2.对演绎推理的生疏(6)“全部3的倍数都是9的倍数,某数m是3的倍数,则m肯定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(7)在演绎推理中,只要符合演绎推理的形式,结论就肯定正确.(×)[感悟·提升]三点提示一是合情推理包括归纳推理和类比推理,所得到的结论都不肯定正确,其结论的正确性是需要证明的.二是在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误,如(3).三是应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,假如大前提与推理形式是正确的,结论必定是正确的.假如大前提错误,尽管推理形式是正确的,所得结论也是错误的.如(7).同学用书第200页考点一归纳推理【例1】(2021·湖北卷)古希腊毕达哥拉斯学派的数学家争辩过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为eq\f(nn+1,2)=eq\f(1,2)n2+eq\f(1,2)n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数 N(n,3)=eq\f(1,2)n2+eq\f(1,2)n,正方形数 N(n,4)=n2,五边形数 N(n,5)=eq\f(3,2)n2-eq\f(1,2)n,六边形数 N(n,6)=2n2-n……可以推想N(n,k)的表达式,由此计算N(10,24)=____________.解析由N(n,3)=eq\f(1,2)n2+eq\f(1,2)n,N(n,4)=eq\f(2,2)n2+eq\f(0,2)n,N(n,5)=eq\f(3,2)n2+eq\f(-1,2)n,N(n,6)=eq\f(4,2)n2+eq\f(-2,2)n,推想N(n,k)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(k-2,2)))n2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4-k,2)))n,k≥3.从而N(n,24)=11n2-10n,N(10,24)=1000.答案1000规律方法归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不肯定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越牢靠,它是一种发觉一般性规律的重要方法.【训练1】(1)(2022·佛山质检)观看下列不等式:①eq\f(1,\r(2))<1;②eq\f(1,\r(2))+eq\f(1,\r(6))<eq\r(2);③eq\f(1,\r(2))+eq\f(1,\r(6))+eq\f(1,\r(12))<eq\r(3).则第5个不等式为________.(2)(2021·陕西卷)观看下列等式(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5……照此规律,第n个等式可为________.解析(2)由已知的三个等式左边的变化规律,得第n个等式左边为(n+1)(n+2)…(n+n),由已知的三个等式右边的变化规律,得第n个等式右边为2n与n个奇数之积,即2n×1×3×5×…×(2n-1).答案(1)eq\f(1,\r(2))+eq\f(1,\r(6))+eq\f(1,\r(12))+eq\f(1,\r(20))+eq\f(1,\r(30))<eq\r(5)(2)(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)考点二类比推理【例2】在平面几何里,有“若△ABC的三边长分别为a,b,c,内切圆半径为r,则三角形面积为S△ABC=eq\f(1,2)(a+b+c)r”,拓展到空间,类比上述结论,“若四周体A-BCD的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,则四周体的体积为________”.审题路线三角形面积类比为四周体的体积⇒三角形的边长类比为四周体四个面的面积⇒内切圆半径类比为内切球的半径⇒二维图形中eq\f(1,2)类比为三维图形中的eq\f(1,3)⇒得出结论.答案V四周体A-BCD=eq\f(1,3)(S1+S2+S3+S4)r规律方法在进行类比推理时,不仅要留意形式的类比,还要留意方法的类比,且要留意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.【训练2】二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观看发觉S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=eq\f(4,3)πr3,观看发觉V′=S.则四维空间中“超球”的四维测度W=2πr4,猜想其三维测度V=________.解析由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论,“超球”的三维测度是四维测度的导函数,即V=W′=(2πr4)′=8πr3.答案8πr3考点三演绎推理【例3】数列{an}的前n项和记为Sn,已知a1=1,an+1=eq\f(n+2,n)Sn(n∈N*).证明:(1)数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))是等比数列;(2)Sn+1=4an.证明(1)∵an+1=Sn+1-Sn,an+1=eq\f(n+2,n)Sn,∴(n+2)Sn=n(Sn+1-Sn),即nSn+1=2(n+1)Sn.∴eq\f(Sn+1,n+1)=2·eq\f(Sn,n),又eq\f(S1,1)=1≠0,(小前提)故eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了)(2)由(1)可知eq\f(Sn+1,n+1)=4·eq\f(Sn-1,n-1)(n≥2),∴Sn+1=4(n+1)·eq\f(Sn-1,n-1)=4·eq\f(n+1,n-1)·Sn-1=4an(n≥2),(小前提)又a2=3S1=3,S2=a1+a2=1+3=4=4a1∴对于任意正整数n,都有Sn+1=4an.(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)同学用书第201页规律方法演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,假如前提是明显的,则可以省略.【训练3】“由于对数函数y=logax是增函数(大前提),而y=logeq\f(1,4)x是对数函数(小前提),所以y=logeq\f(1,4)x是增函数(结论)”,以上推理的错误是().A.大前提错误导致结论错误B.小前提错误导致结论错误C.推理形式错误导致结论错误D.大前提和小前提错误导致结论错误解析当a>1时,函数y=logax是增函数;当0<a<1时,函数y=logax是减函数.故大前提错误导致结论错误.答案A1.合情推理主要包括归纳推理和类比推理.数学争辩中,在得到一个新结论前,合情推理能挂念猜想和发觉结论,在证明一个数学结论之前,合情推理经常能为证明供应思路与方向.2.演绎推理是从一般的原理动身,推出某个特殊状况下的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.3.合情推理仅是“合乎情理”的推理,它得到的结论不肯定正确.而演绎推理得到的结论肯定正确(前提和推理形式都正确的前提下).创新突破12——新定义下的归纳推理【典例】(2021·湖南卷)对于E={a1,a2,…,a100}的子集X={ai1,ai2,…,aik},定义X的“特征数列”为x1,x2,…,x100,其中xi1=xi2=…=xik=1,其余项均为0.❶例如:子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0.❷(1)子集{a1,a3,a5}的“特征数列”的前3项和等于______;(2)若E的子集P的“特征数列”p1,p2,…,p100满足p1=1,pi+pi+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为________.突破1:读懂信息❶,对于集合X={ai1,ai2,…,aik}来说,定义X的“特征数列”为x1,x2,…,x100是一个新的数列,该数列的xi1=xi2=…=xik=1,其余项均为0.突破2:通过例子❷:“子集{a2,a3}的特征数列为0,1,1,0,0,…,0”来理解“特征数列”突破3:依据p1=1,pi+pi+1=1可写出子集P的“特征数列”为:1,0,1,0,1,0,…,1,0,归纳出子集P;同理,子集Q的特征数列为1,0,0,1,0,0,…,1,0,0,归纳出子集Q.突破4:由P与Q的前几项的规律,找出子集P与子集Q的公共元素即可.解析(1)依据题意可知子集{a1,a3,a5}的“特征数列”为1,0,1,0,1,0,0,…,0,此数列前3项和为2.(2)依据题意可写出子集P的“特征数列”为1,0,1,0,1,0,…,1,0,则P={a1,a3,…,a2n-1,…,a99}(1≤n≤50),子集Q的“特征数列”为1,0,0,1,0,0,…,1,0,0,1,则Q={a1,a4,…,a3k-2,…,a100}(1≤k≤34),则P∩Q={a1,a7,a13,…,a97},共有17项.答案(1)2(2)17[反思感悟]此类问题肯定要抓住题设中的例子与定义的紧密结合,细心观看,寻求相邻项及项与序号之间的关系,需有肯定的规律推理力量.【自主体验】若定义在区间D上的函数f(x)对于D上的n个值x1,x2,…,xn总满足eq\f(1,n)[f(x1)+f(x2)+…+f(xn)]≤feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2+…+xn,n))),称函数f(x)为D上的凸函数.现已知f(x)=sinx在(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值是________.解析已知eq\f(1,n)[f(x1)+f(x2)+…+f(xn)]≤feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2+…+xn,n))),(大前提)由于f(x)=sinx在(0,π)上是凸函数,(小前提)所以f(A)+f(B)+f(C)≤3feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(A+B+C,3))),(结论)即sinA+sinB+sinC≤3sineq\f(π,3)=eq\f(3\r(3),2).因此sinA+sinB+sinC的最大值是eq\f(3\r(3),2).答案eq\f(3\r(3),2) 对应同学用书P379基础巩固题组(建议用时:40分钟)一、选择题1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理().A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析f(x)=sin(x2+1)不是正弦函数而是复合函数,所以小前提不正确.答案C2.观看(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=().A.f(x)B.-f(x)C.g(x)D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案D3.(2022·江西卷)观看下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于().A.28B.76C.123D.199解析从给出的式子特点观看可推知,等式右端的值,从第三项开头,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案C4.(2022·长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是().①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①②B.③④C.①④D.②③解析阅历证易知①②错误.依题意,留意到2S(x+y)=2(ax+y-a-x-y),S(x)C(y)+C(x)S(y)=2(ax+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).综上所述,选B.答案B5.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“eq\f(ac,bc)=eq\f(a,b)”类比得到“eq\f(a·c,b·c)=eq\f(a,b)”.以上式子中,类比得到的结论正确的个数是().A.1B.2C.3D.4解析①②正确;③④⑤⑥错误.答案B二、填空题6.(2022·西安五校联考)观看下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72,…,则得出结论:________.解析各等式的左边是第n个自然数到第3n-2个连续自然数的和,右边是中间奇数的平方,故得出结论:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.答案n+(n+1)+(n+2)+…+(3n-2)=(2n-1)27.若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))为等差数列,且通项为eq\f(Sn,n)=a1+(n-1)·eq\f(d,2),类似地,请完成下列命题:若各项均为正数的等比数列{bn}的首项为b1,公比为q,前n项的积为Tn,则________.答案数列{eq\r(n,Tn)}为等比数列,且通项为eq\r(n,Tn)=b1(eq\r(q))n-18.(2022·揭阳一模)给出下列等式:eq\r(2)=2coseq\f(π,4),eq\r(2+\r(2))=2coseq\f(π,8),eq\r(2+\r(2+\r(2)))=2coseq\f(π,16),请从中归纳出第n个等式:eq\r(2+…+\r(2+\r(2)))=________.答案2coseq\f(π,2n+1)三、解答题9.给出下面的数表序列:表1表2表311313544812…其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的挨次构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为13574812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的挨次构成首项为n,公比为2的等比数列.10.f(x)=eq\f(1,3x+\r(3)),先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解f(0)+f(1)=eq\f(1,30+\r(3))+eq\f(1,31+\r(3))=eq\f(1,1+\r(3))+eq\f(1,\r(3)1+\r(3))=eq\f(\r(3),\r(3)1+\r(3))+eq\f(1,\r(3)1+\r(3))=eq\f(\r(3),3),同理可得:f(-1)+f(2)=eq\f(\r(3),3),f(-2)+f(3)=eq\f(\r(3),3).由此猜想f(x)+f(1-x)=eq\f(\r(3),3).证明:f(x)+f(1-x)=eq\f(1,3x+\r(3))+eq\f(1,31-x+\r(3))=eq\f(1,3x+\r(3))+eq\f(3x,3+\r(3)·3x)=eq\f(1,3x+\r(3))+eq\f(3x,\r(3)\r(3)+3x)=eq\f(\r(3)+3x,\r(3)\r(3)+3x)=eq\f(\r(3),3).力量提升题组(建议用时:25分钟)一、选择题1.(2022·江西卷)观看下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为().A.76B.80C.86D.92解析由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.故选B.答案B2.古希腊人常用小石子在沙滩上摆成各种外形来争辩数.比如:
他们争辩过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是().A.289B.1024C.1225D.1378解析观看三角形数:1,3,6,10,…,记该数列为{an},则a1=1,a2=a1+2,a3=a2+3,…an=an-1+n.∴a1+a2+…+an=(a1+a2+…+an-1)+(1+2+3+…+n)⇒an=1+2+3+…+n=eq\f(nn+1,2),观看正方形数:1,4,9,16,…,记该数列为{bn},则bn=n2.把四个选项的数字,分别代入上述两个通项公式,可知使得n都为正整数的只有1225.答案C二、填空题3.在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG对应的S,N,L分别是________;(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年通辽c1货运从业资格证模拟考试
- 2025年度智能家居集成拆除与高端装修设计合同
- 2025年度酒店客房租赁与广告位使用权租赁合同
- 2025年度研究生定向培养协议书:海洋科学与技术研究生产学研合作合同
- 2025年度二零二五年度钢结构工程劳务分包合同
- 二零二五年度牲畜代养与养殖户风险共担合作合同
- 2025年度洗浴技师团队协作与劳动合同
- 二零二五年度药店药品储存养护人员聘用合同
- 2025年度菜鸟驿站快递柜运营权转让合同模板
- 二零二五年度热力管道租赁与供热服务合同
- 2024年北京东城社区工作者招聘笔试真题
- 《敏捷项目管理》课件
- 统编版(2024新版)七年级上学期道德与法治期末综合测试卷(含答案)
- 黑龙江省哈尔滨市2024届中考数学试卷(含答案)
- 五年级上册小数递等式计算200道及答案
- 鲁滨逊漂流记荒岛生活的冒险与探索人性的真实展现
- 安全个人承诺书范文个人承诺书范文
- 远视储备培训课件
- 岭南膏方规范
- 【可行性报告】2023年虚拟演播室制作设备相关行业可行性分析报告
- 世界老年人跌倒的预防和管理指南解读及跌倒应急处理-
评论
0/150
提交评论