下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
生物质颗粒的热反应分析综述针对不同的固相燃料,其热解特性、燃烧特性及反应动力学参数等是研究阴燃传播规律的基础数据ADDINEN.CITE<EndNote><Cite><Author>Zaman</Author><Year>2020</Year><RecNum>313</RecNum><DisplayText><styleface="superscript">[30]</style></DisplayText><record><rec-number>313</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">313</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ZamanF</author><author>AkhtarN</author><author>GuanYP</author><author>HuangYQ</author></authors></contributors><auth-address>BeijingLaboratoryofBiomedicalMaterials,BeijingKeyLaboratoryofElectrochemicalProcessandTechnologyforMaterials,BeijingUniversityofChemicalTechnology,Beijing100029,People’sRepublicofChina</auth-address><titles><title>ThermaldegradationkineticanalysisandconversionofAesculusindicatoporouscarbon</title><secondary-title>IndustrialCropsandProducts</secondary-title></titles><periodical><full-title>IndustrialCropsandProducts</full-title></periodical><volume>153.</volume><keywords><keyword>Himalayanhorsechestnuts</keyword><keyword>Pyrolysis</keyword><keyword>Iso-conversionalmethods</keyword><keyword>Kineticparameters</keyword><keyword>Energystoragedevices</keyword></keywords><dates><year>2020</year></dates><isbn>0926-6690</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[30]。热分析是在程序控制温度下,测量物质的物理性质与温度依赖关系的一类技术。常用的热分析方法有:差热分析(DTA)、热重法(TG)、导数热重法(DTG)、差示扫描量热法(DSC)、热机械分析(TMA)和动态热机械分析(DMA)等。热重分析(TGA)是研究多种材料热分解和降解反应动力学的一种常用而有效的方法ADDINEN.CITE<EndNote><Cite><Author>Aslan</Author><Year>2018</Year><RecNum>328</RecNum><DisplayText><styleface="superscript">[31]</style></DisplayText><record><rec-number>328</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">328</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>AslanDI</author><author>OzogulB</author><author>CeylanS</author><author>GeyikciF</author></authors></contributors><auth-address>OndokuzMayısUniversity,FacultyofEngineering,ChemicalEngineeringDepartment,55139Kurupelit,Samsun,Turkey</auth-address><titles><title>ThermokineticanalysisandproductcharacterizationofMediumDensityFiberboardpyrolysis</title><secondary-title>BioresourceTechnology</secondary-title></titles><periodical><full-title>BioresourceTechnology</full-title></periodical><pages><styleface="normal"font="default"size="100%">105</style><styleface="normal"font="default"charset="134"size="100%">-110</style></pages><volume>258</volume><keywords><keyword>MDF</keyword><keyword>Pyrolysis</keyword><keyword>Kinetics</keyword><keyword>TG/DSC-FTIR</keyword><keyword>Py/GC-MS</keyword></keywords><dates><year>2018</year></dates><isbn>0960-8524</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[31]。热重分析(TGA)是在程序控温下测量物质的质量随温度或时间的变化关系,燃烧或分解开始的温度可由TGA确定,另外可以通过热重曲线获得动力学参数ADDINEN.CITEADDINEN.CITE.DATA[32,33]。GilADDINEN.CITE<EndNote><Cite><Author>Gil</Author><Year>2010</Year><RecNum>358</RecNum><DisplayText><styleface="superscript">[34]</style></DisplayText><record><rec-number>358</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">358</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>GilMV</author><author>CasalD</author><author>PevidaC</author><author>PisJJ</author><author>RubieraF</author></authors></contributors><auth-address>InstitutoNacionaldelCarbón,CSIC,Apartado73,33080Oviedo,Spain</auth-address><titles><title>Thermalbehaviourandkineticsofcoal/biomassblendsduringco-combustion</title><secondary-title>BioresourceTechnology</secondary-title></titles><periodical><full-title>BioresourceTechnology</full-title></periodical><pages>5601-5608</pages><volume>101</volume><number>14</number><keywords><keyword>Biomass</keyword><keyword>Coal</keyword><keyword>Co-combustion</keyword><keyword>TG</keyword><keyword>Kinetics</keyword></keywords><dates><year>2010</year></dates><isbn>0960-8524</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[34]采用热重分析(TGA)对煤、松木屑及其混合物在燃烧条件下的热特性和动力学进行了研究,发现松木屑燃烧分两步进行,挥发分在200~360°C之间释放并燃烧,炭燃烧在360~490°C之间进行,而煤只有一个燃烧阶段,在315~615°C之间。BoukaousADDINEN.CITE<EndNote><Cite><Author>Boukaous</Author><Year>2018</Year><RecNum>326</RecNum><DisplayText><styleface="superscript">[35]</style></DisplayText><record><rec-number>326</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">326</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>BoukaousN</author><author>AbdelouahedL</author><author>ChikhiM</author><author>MeniaiAH</author><author>MohabeerC</author><author>BecharaT</author></authors></contributors><auth-address>LaboratoiredeSécuritédesProcédésChimiquesLSPC-4704,INSARouen,UNIROUEN,NormandieUniv.,76000Rouen,France;boukaous.nourelhouda@insa-rouen.fr(N.B.);chikirsha.mohabeer@insa-rouen.fr(C.M.);bechara.taouk@insa-rouen.fr(T.B.);;FacultédeGéniedesProcédésUniversitédeConstantine3,25000Constantine,Algeria;chikhi_mustapha@yahoo.fr(M.C.);meniai@yahoo.fr(A.-H.M.)</auth-address><titles><title>Combustionofflaxshives,beechwood,purewoodypseudo-componentsandtheirchars:Athermalandkineticstudy</title><secondary-title>Energies</secondary-title></titles><periodical><full-title>Energies</full-title></periodical><volume>11(8).</volume><keywords><keyword>Biomass</keyword><keyword>Combustion</keyword><keyword>Thermogravimetricanalysis</keyword><keyword>Kineticparameters</keyword><keyword>Thermalcharacteristics</keyword></keywords><dates><year>2018</year></dates><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[35]采用热重分析方法研究了亚麻柴、山毛榉木、半纤维素、纤维素、木质素及它们炭化物的燃烧特性,基于特征温度(着火温度、最高温度和最终温度)、燃尽时间和最大速率分析了其热行为,利用Coats-Redfern法确定了不同材料的燃烧动力学参数。WangADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2020</Year><RecNum>320</RecNum><DisplayText><styleface="superscript">[36]</style></DisplayText><record><rec-number>320</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">320</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>WangT</author><author>FuTM</author><author>ChenK</author><author>ChengRS</author><author>ChenS</author><author>LiuJX</author><author>MeiM</author><author>LiJP</author><author>XueYJ</author></authors></contributors><auth-address>SchoolofEnvironmentalEngineering,WuhanTextileUniversity,Wuhan430073,China;;EngineeringResearchCentreforCleanProductionofTextileDyeingandPrinting,MinistryofEducation,WuhanTextileUniversity,Wuhan430073,China;;StateKeyLaboratoryofSilicateMaterialsforArchitectures,WuhanUniversityofTechnology,Wuhan,Hubei430070,China</auth-address><titles><title>Co-combustionbehaviorofdyeingsludgeandricehuskbyusingTG-MS:Thermalconversion,gasevolution,andkineticanalyses</title><secondary-title>BioresourceTechnology</secondary-title></titles><periodical><full-title>BioresourceTechnology</full-title></periodical><volume>311.</volume><keywords><keyword>Dyeingsludge</keyword><keyword>Ricehusk</keyword><keyword>Co-combustion</keyword><keyword>GasEmissions</keyword><keyword>Kinetic</keyword></keywords><dates><year>2020</year></dates><isbn>0960-8524</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[36]利用热重-质谱分析法研究了添加稻壳对印染污泥燃烧过程中燃烧性能、气体产物和动力学的影响,以改善废油发电过程。SinghADDINEN.CITE<EndNote><Cite><Author>K</Author><Year>2020</Year><RecNum>316</RecNum><DisplayText><styleface="superscript">[37]</style></DisplayText><record><rec-number>316</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">316</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>SinghRK</author><author>PandeyD</author><author>PatilT</author><author>SawarkarAN</author></authors></contributors><titles><title>Pyrolysisofbananaleavesbiomass:Physico-chemicalcharacterization,thermaldecompositionbehavior,kineticandthermodynamicanalyses</title><secondary-title>BioresourceTechnology</secondary-title></titles><periodical><full-title>BioresourceTechnology</full-title></periodical><volume>310.</volume><dates><year>2020</year></dates><isbn>0960-8524</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[37]通过非等温热重实验对香蕉叶生物质的热降解过程进行了研究,确定了活化能、指前因子、反应模型和热动力学参数。BarzegarADDINEN.CITE<EndNote><Cite><Author>Barzegar</Author><Year>2020</Year><RecNum>314</RecNum><DisplayText><styleface="superscript">[38]</style></DisplayText><record><rec-number>314</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">314</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>BarzegarR</author><author>YozgatligilA</author><author>OlgunH</author><author>AtimtayAT</author></authors></contributors><auth-address>MechanicalEngineeringDepartment,MiddleEastTechnicalUniversity,UniversitelerMahallesi,DumlupinarBulvariNo:1,Ankara06800,Turkey;;EgeUniversity,SolarEnergyInstitute,Bornova,İzmir,Turkey;;EnvironmentalEngineeringDepartment,MiddleEastTechnicalUniversity,UniversitelerMahallesi,DumlupinarBulvariNo:1,Ankara06800,Turkey</auth-address><titles><title>TGAandkineticstudyofdifferenttorrefactionconditionsofwoodbiomassunderairandoxy-fuelcombustionatmospheres</title><secondary-title>JournaloftheEnergyInstitute</secondary-title></titles><periodical><full-title>JournaloftheEnergyInstitute</full-title></periodical><pages>889-898</pages><volume>93</volume><number>3</number><keywords><keyword>Torrefiedbiomass</keyword><keyword>Oxy-fuelcombustion</keyword><keyword>Kinetics</keyword><keyword>TGA</keyword></keywords><dates><year>2020</year></dates><isbn>1743-9671</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[38]在空气和富氧条件下对烘干松木屑燃烧进行了热重分析和动力学分析,采用FWO、KAS和Friedman方法估算了表观活化能,发现在空气和富氧条件下,活化能的变化趋势类似,但活化能值的变化很小。1.1热反应动力学理论假设描述化学反应速率常数随温度变化关系的阿伦尼乌斯(Arrhenius)公式可用于热分析反应,则反应速率常数为: (1-1)式中,为反应速率常数,s-1;为频率因子,s-1;为活化能,J/mol;为摩尔气体常数,;为温度,K。反应动力学方程为: (1-2)式中,为动力学机理函数,表示物质反应速率与转化率之间的某种函数关系;为转化率,定义如下: (1-3)式中,为试样的初始质量;为试样在时刻的质量;为试样反应结束后的质量。将式(1-1)带入式(1-2)中,得到: (1-4)定义温升速率: (1-5)将代入式(1-5),并对其进行积分得: (1-6) (1-7)其中为转换率的积分形式;为温度的积分形式,没有特解,采用数值逼近法求解。目前常用的如表1-1所示ADDINEN.CITE<EndNote><Cite><Author>冉景煜</Author><Year>2009</Year><RecNum>362</RecNum><DisplayText><styleface="superscript">[39]</style></DisplayText><record><rec-number>362</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">362</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>冉景煜</author><author>曾艳</author><author><styleface="normal"font="default"size="100%">张力</style><styleface="normal"font="default"charset="134"size="100%">,等</style></author></authors></contributors><auth-address>重庆大学能源与环境研究所;</auth-address><titles><title>几种典型农作物生物质的热解及动力学特性</title><secondary-title>重庆大学学报</secondary-title></titles><periodical><full-title>重庆大学学报</full-title></periodical><pages>76-81</pages><volume>32</volume><number>1</number><keywords><keyword>生物质</keyword><keyword>热解特性</keyword><keyword>动力学</keyword><keyword>热重分析</keyword></keywords><dates><year>2009</year></dates><isbn>1000-582X</isbn><call-num>50-1044/N</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[39],本文选用化学反应模型。表1-1常用的固体反应动力学机理函数Table1-1Commonlyusedsolidreactionkineticsmechanismfunction反应机理符号G(α)化学反应n=1F1-ln(1-α)n=2F2(1-α)-1-1n=3F3[(1-α)-2-1]/2扩散一维扩散D1α2二维扩散D2α+(1-α)ln(1-α)三维扩散D3[1-(1-α)1/3]2Ginstling-Brounshtein方程D41-2α/3-(1-α)2/3相界反应一维R1α二维R21-(1-α)1/2三维R31-(1-α)1/3随机成核及增长二维A2[-ln(1-α)]1/2三维A3[-ln(1-α)]1/3指数成核幂次法则,n=1/2P2α1/2幂次法则,n=1/3P3α1/3幂次法则,n=1/4P4α1/4目前已经有很多用于计算动力学参数的经验模型,等转化率法和模型拟合法是两类主要的方法。1.2等转化率法等转化率法可以在没有任何特定形式的反应模型的情况下求解动力学参数,是计算反应活化能最可靠的方法,被国际热分析和量热法联合会动力学委员会高度推荐ADDINEN.CITEADDINEN.CITE.DATA[40,41]。然而,等转化率法需要不同加热速率下的实验数据来确定动力学参数。本文采用KAS法ADDINEN.CITE<EndNote><Cite><Author>Lopez-Velazquez</Author><Year>2013</Year><RecNum>350</RecNum><DisplayText><styleface="superscript">[42]</style></DisplayText><record><rec-number>350</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">350</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lopez-VelazquezMA</author><author>SantesV</author><author>BalmasedaJ</author><author>Torres-GarciaE</author></authors></contributors><auth-address>Depto.deBiocienciaseIngeniería,CIIEMAD,InstitutoPolitécnicoNacional,Calle30dejuniode1520,Col.BarriolaLagunaTicomán,GustavoA.Madero,México,D.F.07340,Mexico;;Departamentodepolímeros,InstitutodeInvestigacionesenMateriales,UniversidadNacionalAutónomadeMéxico,México,D.F.C.P.04510,Mexico;;InstitutoMexicanodelPetróleo,EjeCentral#152,México,D.F.07730,Mexico</auth-address><titles><title>Pyrolysisoforangewaste:Athermo-kineticstudy</title><secondary-title>JournalofAnalyticalandAppliedPyrolysis</secondary-title></titles><periodical><full-title>JournalofAnalyticalandAppliedPyrolysis</full-title></periodical><pages>170-177</pages><volume>99</volume><keywords><keyword>Pyrolysisoforangewaste</keyword><keyword>Bio-energetic</keyword><keyword>Ligno-cellulosic</keyword><keyword>Kinetics</keyword><keyword>TGA–FTIR</keyword></keywords><dates><year>2013</year></dates><isbn>0165-2370</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[42],FWO法ADDINEN.CITE<EndNote><Cite><Author>Ozawa</Author><Year>1965</Year><RecNum>388</RecNum><DisplayText><styleface="superscript">[43]</style></DisplayText><record><rec-number>388</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">388</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>OzawaT</author></authors></contributors><titles><title>Anewmethodofanalyzingthermogravimetricdata</title><secondary-title>BulletinoftheChemicalSocietyofJapan</secondary-title></titles><periodical><full-title>BulletinoftheChemicalSocietyofJapan</full-title></periodical><pages>1811-+</pages><volume>38</volume><number>11</number><dates><year>1965</year></dates><isbn>1348-0634</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[43]和Friedmanmethod法ADDINEN.CITE<EndNote><Cite><Author>Friedman</Author><Year>1964</Year><RecNum>389</RecNum><DisplayText><styleface="superscript">[44]</style></DisplayText><record><rec-number>389</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">389</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>FriedmanHL</author></authors></contributors><titles><title>Kineticsofthermaldegradationofchar‐formingplasticsfromthermogravimetry.Applicationtoaphenolicplastic</title><secondary-title>JournalofPolymerSciencePartC-PolymerSymposium</secondary-title></titles><periodical><full-title>JournalofPolymerSciencePartC-PolymerSymposium</full-title></periodical><pages>183-&</pages><volume>6</volume><dates><year>1964</year></dates><isbn>0449-2994</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[44]计算动力学参数。根据等转化率原则,在一定的转化率下,生物质热解反应速率是温度的函数ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2017</Year><RecNum>336</RecNum><DisplayText><styleface="superscript">[45]</style></DisplayText><record><rec-number>336</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">336</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>WangSR</author><author>DaiGX</author><author>YangHP</author><author>LuoZY</author></authors></contributors><auth-address>StateKeyLaboratoryofCleanEnergyUtilization,ZhejiangUniversity,Hangzhou310027,China;;StateKeyLaboratoryofCoalCombustion,HuazhongUniversityofScienceandTechnology,Wuhan430074,China</auth-address><titles><title>Lignocellulosicbiomasspyrolysismechanism:Astate-of-the-artreview</title><secondary-title>ProgressinEnergyandCombustion
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度企业员工借用设备使用期限合同3篇
- 2025年度定制家具行业竞业禁止模板木方买卖合同3篇
- 2025年度农村自建房合同协议书(含智能安防监控)
- 养殖场土地租赁合同(二零二五年度)农业科技创新3篇
- 二零二五年度个人施工安全责任协议书范本3篇
- 2025年度农村自建房工程承包合同
- 2025年度全新官方版二零二五年度离婚协议书与房产分割执行细则3篇
- 二零二五年度特色农业农田承包合作协议
- 2025年度出租车位充电桩安装工程验收及质保合同
- 二零二五年度全新写字楼转租协议合同:商务楼租赁权转让专案2篇
- 《班主任工作》教学大纲
- 新版出口报关单模板
- 北京市西城区师范学校附属小学北师大版数学六年级上册期末试题测试题及答案
- 杭州工地数字化施工方案
- 腾讯云大数据云平台TBDS 产品白皮书
- 网球国家二级裁判培训讲座
- 中南大学军事理论学习通超星课后章节答案期末考试题库2023年
- 员工工资条模板
- 缺点列举法课件
- 篮球专项体育课教学大纲、教学计划
- 创新与创业管理-四川大学中国大学mooc课后章节答案期末考试题库2023年
评论
0/150
提交评论