




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22/22专题4.1坐标系中的面积问题与规律问题专项训练本专题训练卷共60题,其中:平面直角坐标系的面积问题25题,平面直角坐标系的规律问题35题;题型针对性较强,覆盖面广,选题有深度,包含了平面直角坐标系中的规律问题和面积问题全部类型。问题1.平面直角坐标系的面积:&知坐标,求面积&知面积,求坐标&分类讨论(方程(1)知坐标,求面积解题技巧:已知组成不规则图形端点的坐标,求面积问题,常用方法为:“割补法”。原则是通过割补,不规则图形或则边长不好表示的图形成容易根据点的坐标求解出边长的图形,然后在求解图形面积。=1\*GB3①不规则多边形:过不规则图形的顶点作坐标轴的垂线与平行线,将不规则图形“补形”成一个大的矩形;然后用大的矩形面积减去多余部分图形(多位直角三角形)面积。=2\*GB3②三角形:三角形用“补形法”也可以进行,但相对比较麻烦,三角形常用方法为“切割法”。过三角形的顶点作坐标轴的垂线,将三角形切割成易于根据点的坐标求解边长的规则图形。(2)知面积,求坐标(方程思想)解题技巧:我们可以利用方程的思想,设未知点的坐标为未知数,然后再根据点的坐标,确定线段的长度,进而根据图形面积列方程,求解出未知数即可。方程思想是比较常见的一类数学思想,引入未知数,可将图形问题转化方程求解的问题。(3)分类讨论解题技巧:此类题型仅不知图形的一个顶点,且已知面积,求这个顶点。∵这个顶点位置不固定,存在多解情况,需考虑全面。=1\*GB3①点在坐标轴上:先确定三角形的底,根据面积,确定三角形高的长度。在根据底的长度或高的长度来确定未知点的位置。=2\*GB3②点在格点上:已知三角形的面积,根据条件,先确定三角形的底;然后根据面积,确定高;最后根据高的大小,确定未知点的位置(多解)。1.(2022•历下区八年级期中)如图,由8个边长为1的小正方形组成的图形,被线段AB平分为面积相等的两部分,已知点A的坐标是(1,0),则点B的坐标为()A.(113,3) B.(103,3)2.(2022•仙居县期末)如图,在平面直角坐标系中,点A(1,1),点B(3,0).现将线段AB平移,使点A,B分别平移到点A′,B',其中点A′(1,4),则四边形AA'B'B的面积为.3.(2022•海淀区八年级期中)如图,在平面直角坐标系中,曲线f向上平移1个单位形成曲线g的过程中所扫过的面积是.4.(2022•江夏区八年级月考)如图所示,直角坐标系中四边形的面积是()A.15.5 B.20.5 C.26 D.315.(2022•沙河市八年级期中)在网格图中有一个面积为10的△ABC,△ABC的三个顶点均在网格的格点上,墨墨在网格图中建立了适当的直角坐标系,并知道点A的坐标为(2,3),点B的坐标为(﹣3,﹣2),后来墨墨不小心在该图洒上了墨水,如图所示,点C的坐标看不清了,但他记得线段AC与y轴平行,则点C的坐标为()A.(2,1) B.(1,2) C.(2,﹣1) D.(﹣1,2)6.(2022•漳州校级一模)已知:如图△ABC的顶点坐标分别为A(﹣4,﹣3),B(0,﹣3),C(﹣2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为s1s2(填“<”、“>”、“=”).7.(2022·吉林通化·七年级期末)如图,平面直角坐标系中有一个的正方形网格,每个小正方形的边长为1个单位长度,每个小正方形的顶点称为格点,点、、均在格点上,请完成下列问题.(1)点坐标为_________.(2)将先向_________平移_________个单位、再向_________平移_________个单位到达的位置.(3)图中阴影部分的面积为_________.8.(2022·陕西·大荔县教学研究室七年级期末)如图,在平面直角坐标系中,将折线向右平移得到折线,则折线在平移过程中扫过的面积是______.9.(2022春•重庆期末)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+b−8=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+A.12 B.14 C.16 D.2010.(2022春•昌黎县期末)如图,在直角坐标系中,A(﹣1,2),B(3,﹣2),则△AOB的面积为.11.(2022·凉州区洪祥乡洪祥中学初二期末)如图(方格坐标纸)所示.(1)分别写出、、、的坐标;(2)写出点向右平移个单位再向下平移个单位的的坐标;(3)写出点到轴的距离;(4)求四边形的面积;(5)点与点有什么关系.12.(2022·厦门市槟榔中学)已知,在平面直角坐标系中,O为原点,A(﹣4,0),B(2,3).(1)请在直角坐标系中画出三角形ABO并求出三角形ABO的面积;(2)连接AB交y轴于点C,求点C的坐标.13.(2022·湖北云梦·初二期末)如图,中,两点的坐标分别为,求的面积.14.(2022·江苏·南师附中新城初中七年级期中)如图,在方格纸内将△ABC水平向右平移4个单位得到.(1)补全,利用网格点和直尺画图;(2)画出BC边上的高线AD;(3)若图中△ABE是△ABC面积的2倍,在格中描出所有满足条件的格点E,并记为E1、E2、E3…15.(2022·江苏泰州·七年级期末)在正方形网格中,每个小正方形的边长为1个单位长度,的三个顶点A、B、C都在格点上.现将平移,使点A平移到点D,点E、F分别是B、C的对应点.(1)请在图中画出平移后的;(2)四边形ABED的面积为多少?;(3)在网格中画出一个格点P,使得(画出一个即可).16.(2022·辽宁沈阳·八年级期末)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点A(2,﹣1),C(6,2),点M为y轴上一点,△MAB的面积为6.请解答下列问题:(1)顶点B的坐标;(2)连接BD,求BD的长;(3)请直接写出点M的坐标.17.(2022·湖北黄石·七年级期中)平面直角坐标系中,将点A、B先向下平移3个单位长度,再向右平移2个单位后,分别得到点A′(3,-2)、B′(2,-4)(1)点A坐标为________,点B坐标为_________,并在图中标出点A、B;(2)若点C的坐标为(2,-2),求△ABC的面积;(3)在(2)的条件下,点D为y轴上的点,且使得△ABD面积与△ABC的面积相等,求D点坐标.18.(2022春•上杭县期末)在平面直角坐标系中(单位长度为1cm),已知点M(m,0),N(n,0),且m+n−3+|2m+n|=0.(1)求m,n的值;(2)若点E是第一象限内一点,且EN⊥x轴,点E到x轴的距离为4,过点E作x轴的平行线a,与y轴交于点A.点P从点E处出发,以每秒2cm的速度沿直线a向左移动,点Q从原点O同时出发,以每秒1cm的速度沿x轴向右移动.①经过几秒PQ平行于y轴?②若某一时刻以A,O,Q,P为顶点的四边形的面积是10cm2,求此时点P19.(2022春•武清区期中)已知点A(a,0)、B(b,0),且a+4+|b(1)求a、b的值.(2)在y轴的正半轴上找一点C,使得三角形ABC的面积是15,求出点C的坐标.(3)过(2)中的点C作直线MN∥x轴,在直线MN上是否存在点D,使得三角形ACD的面积是三角形ABC面积的12?若存在,求出点D20.(2022春•通川区期末)已知在平面直角坐标系中,O为坐标原点,点A的坐标为(2,a),点B的坐标为(b,2),点C的坐标为(c,0),其中a,b满足(a+b﹣10)2+|a﹣b+2|=0.(1)求A,B两点的坐标;(2)当△ABC的面积为10时,求点C的坐标;(3)当2≤S△ABC≤12时,则点C的横坐标c的取值范围是.21.(2022·河南安阳·七年级期末)问题情境:在平面直角坐标系中,对于任意一点,定义点的“绝对和”为:.例如:已知点P(2,3),则.解决问题:(1)已知点A(4,-1)则_______;(2)如图,已知点M(4,4),连接点O、M得线段OM.点Q是线段OM上的一个动点.①若d(Q)=6,求点的坐标;②若线段OM向上平移个单位,点的对应点为,如果,求的取值范围;③若线段OM先向右平移个单位,再向上平移个单位后,点的对应点依次为、,连接点Q、、得到.则的形状是_________;的面积是_______.(用含有字母a、b的式子表示)22.(2022·江苏苏州·八年级阶段练习)如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D运动,设点P运动的时间为t秒(0<t<13).(1)①点D的坐标是;②当点P在AB上运动时,点P的坐标是(用t表示);(2)求出△POD的面积等于9时点P的坐标;23.(2022·浙江·九年级)如图,在长方形ABCD中,AB=10cm,BC=6cm,E为DC的中点.(1)以A为原点(即O与A重合),以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则C的坐标为;(2)若(1)中长方形以每秒2cm的速度沿x轴正方向移动2秒后,得到长方形,则的坐标为,长方形的面积为;(3)若(1)中长方形以每秒2cm的速度沿x轴正方向移动,运动时间为t,用含t的式子直接表示出长方形的面积(线段可以看成是面积为0的长方形);点E移动后对应点为F,直接写出t为何值时长方形的面积是三角形的3倍?24.(2022·湖北武汉·七年级期末)平面直角坐标系中,,,,均为整数,且满足,点在轴负半轴上且,将线段平移到,其中点的对应点是点.(1)请直接写出点,,的坐标;(2)如图(1),若点的坐标为,点为线段上一点,且的面积大于12,求的取值范围;(3)如图(2),若与轴的交点在点上方,点为轴上一动点,请直接写出,,之间的数量关系.25.(2022·河南商丘·七年级期中)如图1,在平面直角坐标系中,点,的坐标分别是,,现同时将点,分别向上平移2个单位长度,再向右平移2个单位长度,得到,的对应点,,连接,,.(1)点的坐标为_______,点的坐标为_______,四边形的面积为_________;(2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)如图2,点是线段上一动点(,两点除外),试说明与的大小关系,并说明理由.问题2.平面直角坐标系的规律问题1.(2022·河南商丘·七年级阶段练习)如图,在平面直角坐标系xOy中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),现把一条长为2022个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→B……的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(
)A.(1,1) B.(0,1) C.(﹣1,1) D.(1,0)2.(2022·安徽合肥·七年级期末)如图,直角坐标平面内,动点P按图中箭头所示方向依次运动,第1次从点运动到点,第2次运动到点,第3次运动到点,…,按这样的运动规律,动点P第2022次运动到点的坐标是(
)A. B. C. D.3.(2022·四川宜宾·八年级期末)在平面直角坐标系中,如果点经过某种变换后得到点,我们把点叫做点的终结点.已知点P的终结点为,点的终结点为,点的终结点为,点的终结点为,这样依次得到,,,,,,若点P的坐标为,则点的坐标为(
)A. B. C. D.4.(2022·四川泸州·七年级期末)在平面直角坐标系中,一个智能机器人接到如下指令:从原点出发,按向右,向上,向右,向下的方向依次不断移动,每次移动,其行走路线如图所示,第一次移动到,第二次移动到,,第次移动到,则的坐标是(
)A. B. C. D.5.(2022·山东滨州·七年级期中)如图,动点在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点,第二次运动到点,第三次运动,…,按这样的运动规律,第2022次运动后,动点的纵坐标是(
)A.1 B.2 C.-2 D.06.(2022·江西宜春·七年级期末)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,……均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)……,根据这个规律,点P2022的坐标为()A.(﹣505,﹣505)B.(505,﹣506)C.(505,505)D.(﹣505,506)7.(2022•宽城县期末)如图,在平面直角坐标系xOy中,正方形ABCD的顶点A(1,﹣1),D(3,﹣1),规定把正方形ABCD“先沿y轴翻折,再向下平移1个单位”为一次变换,这样连续经过2022次变换后,点C的坐标为()A.(﹣3,﹣2023) B.(3,﹣2024) C.(3,﹣2025) D.(﹣3,﹣2026)8.(2022•西平县期末)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,你观察图形,猜想由里向外第2021个正方形四条边上的整点个数共有()A.2021个 B.4042个 C.6063个 D.8084个9.(2022春•青川县期末)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标为()A.(14,0) B.(14,﹣1) C.(14,1) D.(14,2)10.(2022•绥中县期末)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2021的坐标为()A.(﹣505,﹣505)B.(﹣505,506) C.(506,506)D.(505,﹣505)11.(2022•海城市期中)如图,将边长为1的正方形OAPB沿x轴正方向连续翻转8次,点P依次落在点P、P2、P3、P4、…Px的位置,则点P9的横坐标是()A.5 B.6 C.7 D.912.(2022秋•石柱县校级月考)如图,在一张无穷大的格纸上,格点的位置可用数对(m,n)表示,如点A的位置为(3,3),点B的位置为(6,2).点M从(0,0)开始移动,规律为:第1次向右移动1个单位到(1,0),第2次向上移动2个单位到(1,2),第3次向右移动3个单位到(4,2),…,第n次移动n个单位(n为奇数时向右,n为偶数时向上),那么点M第27次移动到的位置为()A.(182,169) B.(169,182) C.(196,182) D.(196,210)13.(2022•重庆模拟)如图,在平面直角坐标系上有个点P(1,0),点P第一次向上跳动1个单位至P1(1,1),紧接着第二次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(﹣24,49) B.(﹣25,50) C.(26,50) D.(26,51)14.(2022•上杭县期末)如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1),…,按照这样的规律下去,点A2021的坐标为()A.(6062,2020)B.(3032,1010) C.(3030,1011)D.(6063,2021)15.(2022•张湾区模拟)如图,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如图顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2021个点的坐标为()A.(46,4) B.(46,3) C.(45,4) D.(45,5)16.(2022·辽宁·兴城市第二初级中学七年级期中)如图,一个粒子在第一象限内及x轴,y轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x轴,y轴平行的方向来回运动,且每分钟移动1个长度单位.在第2019分钟时,这个粒子所在位置的坐标是_________17.(2022·河南信阳·七年级期末)在平面直角坐标系xOy中,对于点,我们把点叫做点P的伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,….若点的坐标为(3,1),则点的坐标为______.18.(2022·辽宁大连·七年级期末)如图,在平面直角坐标系中,点依次排列下去,则点的横坐标为____________.19.(2022·湖北十堰·七年级期末)在平面直角坐标系中,对于点,我们把点叫作点的伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,这样依次得到点,,,…,若点的坐标为,对于任意的正整数,点均在轴上方,则,应满足的条件为____.20.(2022·广西南宁·七年级期中)如图,小球起始时位于处,沿所示的方向击球,小球运动的轨迹如图所示,如果小球起始时位于处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是,那么小球第次碰到球桌边时,小球的位置是______.21.(2022·湖北十堰·七年级阶段练习)如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到的位置,再到的位置…依次进行下去,发现,,…那么点的横坐标为______.22.(2022·湖北孝感·七年级期中)在平面直角坐标系中,对于点P(a,b),我们把Q(-b+1,a+1)叫做点P的伴随点,已知点A1的伴随点为A2,A2的伴随点为A3,……依次下去,得到A1,A2,A3,……An,若A1的坐标为(3,2),则A2022的坐标为________.23.(2022·宁夏·盐池县第五中学七年级期中)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P61的坐标是_______.24.(2022·福建龙岩·七年级期中)如图,在平面直角坐标系中,点A从依次跳动到,,,,,,,,,,…,按此规律,则点的坐标是______________25.(2022·山东济宁·八年级期末)如图,在平面直角坐标系中,点N1(1,1)在直线l:y=x上,过点N1作N1M1⊥l,交x轴于点M1;过点M1作M1N2⊥x轴,交直线l于点N2;过点N2作N2M2⊥l,交x轴于点M2;过点M2作M2N3⊥x轴,交直线1于点N3;……,按此作法进行下去,则点M2022的坐标为_____.26.(2022·河北·辛集市七年级期末)如图所示,平面直角坐标系中,x轴负半轴上有一点A(﹣1,0),点A第1次向上平移1个单位至点A1(﹣1,1),接着又向右平移1个单位至点A2(0,1),然后再向上平移1个单位至点A3(0,2),向右平移1个单位至点A4(1,2),…,照此规律平移下去,当点A平移至点A8时,点A8的坐标为________,当点A平移至点A2021时,点A2021的坐标是________.27.(2022·内蒙古鄂尔多斯·七年级期末)如图:在直角坐标系中,设一动点自处向上运动1个单位至,然后向左运动2个单位至处,再向下运动3个单位至处,再向右运动4个单位至处,再向上运动5个单位至处,如此继续运动下去.设,,2,3…,则________.28.(2022·广东·梅华中学八年级期中)如图所示,已知A(0,0),OC=1,∠OCB=60°,在△ABC内依次作等边三角形,使一边在轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长为___________.29.(2022•烟台模拟)我们把1,1,2,3,5,8,13,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P1P2,P2P3,P3P4,…得到斐波那契螺旋线,然后顺次连接P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P230.(2022•东城区二模)在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是;当走完第2016步时,棋子所处位置的坐标是.31.(2022•曲靖)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国理发店可调座椅行业市场全景分析及前景机遇研判报告
- 2024年度浙江省二级造价工程师之建设工程造价管理基础知识押题练习试卷A卷附答案
- 2024年度浙江省二级造价工程师之土建建设工程计量与计价实务过关检测试卷A卷附答案
- 小学语文培训课件
- DB43-T 2862-2023 油茶良种穗条生产技术规程
- 统编版二年级语文下册第二单元基础测试卷(单元测试)(含答案)
- 小学数学趣味教育故事设计
- 幼儿园小班社会教案我喜欢老师
- 肿瘤靶向药物的作用机制
- 初中ps考试题及答案
- 2024年河南省兰考县教育局公开招聘试题含答案分析
- 2025年北京市高考英语试卷真题(含答案解析)
- 招商运营笔试题目及答案
- 湟水河河湟新区段北岸防洪生态综合治理项目 社会稳定风险评估报告
- JG/T 272-2010预制高强混凝土薄壁钢管桩
- JG/T 266-2011泡沫混凝土
- 杂屋转让合同协议书
- 情侣送礼转账协议书
- 2024年湖北省中考地理生物试卷(含答案)
- (完整版)《普通心理学-彭聃龄》知识要点
- 借款担保人担保承诺书
评论
0/150
提交评论