中考数学几何专项冲刺专题12几何变换之平移巩固练习(提优)含答案及解析_第1页
中考数学几何专项冲刺专题12几何变换之平移巩固练习(提优)含答案及解析_第2页
中考数学几何专项冲刺专题12几何变换之平移巩固练习(提优)含答案及解析_第3页
中考数学几何专项冲刺专题12几何变换之平移巩固练习(提优)含答案及解析_第4页
中考数学几何专项冲刺专题12几何变换之平移巩固练习(提优)含答案及解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

几何变换之平移巩固练习1.如图,在平面直角坐标系中,△ABC的顶点C的坐标为(1,3).(1)请直接写出点A、B的坐标;(2)若把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,画出△A′B′C′;(3)直接写出△A′B′C′各顶点的坐标;(4)求出△ABC的面积.2.三角形ABC在正方形网格中的位置如图所示,网格中每个小方格的边长为1个单位长度,请根据下列提示作图.(1)将三角形ABC向上平移3个单位长度,再向右平移2个单位长度得到三角形A'B'C',画出三角形A'B'C'.(2)连接AC',BC',则三角形ABC'的面积为.3.如图,△ABC向左平移3个单位,再向上平移1个单位得到△A1B1C1.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标;(2)求△ABC的面积.4.如图,在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a(1)求A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(﹣2,t),若三角形ABC的面积为8,求点D的坐标.5.如图,在平面直角坐标系中,点A(2,6),B(4,3),将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为A',B',连接AA'交y轴于点C,BB'交x轴于点D.(1)线段A'B'可以由线段AB经过怎样的平移得到?并写出A',B'的坐标;(2)求四边形AA'B'B的面积;(3)P为y轴上的一动点(不与点C重合),请探究∠PCA′与∠A'DB'的数量关系,给出结论并说明理由.6.如图,在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(4,0),现将线段AB向右平移一个单位,向上平移4个单位,得到线段CD,点P是y轴上的动点,连接BP;(1)当点P在线段OC上时(如图一),判断∠CPB与∠PBA的数量关系;(2)当点P在OC所在的直线上时,连接DP(如图二),试判断∠DPB与∠CDP,∠PBA之间的数量关系,请直接写出结论.7.如图,在平面直角坐标系xOy中,点A(a,b),B(m,n)分别是第三象限与第二象限内的点,将A,B两点先向右平移h个单位,再向下平移1个单位得到C,D两点(点A对应点C).(1)写出C,D两点的坐标;(用含相关字母的代数式表示)(2)连接AD,过点B作AD的垂线l,E是直线l上一点,连接DE,且DE的最小值为1.①若b=n﹣1,求证:直线l⊥x轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(x,y)都是这个方程的一个解.在①的条件下若关于x,y的二元一次方程px+qy=k(pq≠0)的图象经过点B,D及点(s,t),判断s+t与m+n是否相等,并说明理由.8.在△ABC中,∠ABC=90°,AB=BC=2,点M是线段BC的中点,点N在射线MB上,连接AN,平移△ABN,使点N移动到点M,得到△DEM(点D与点A对应,点E与点B对应),DM交AC于点P.(1)若点N是线段MB的中点,如图1.①依题意补全图1;②求DP的长;(2)若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若MQ=DP,求CE的长.9.如图,已知AB∥CD,点E在直线AB,CD之间.(1)求证:∠AEC=∠BAE+∠ECD;(2)若AH平分∠BAE,将线段CE沿CD平移至FG.①如图2,若∠AEC=90°,HF平分∠DFG,求∠AHF的度数;②如图3,若HF平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由.10.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.11.如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.12.在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+b﹣2|+2a−b+5=0,现同时将点A,B分别向右平移1个单位,再向上平移2个单位,分别得到点A,B的对应点为C,(1)请直接写出A、B、C、D四点的坐标并在坐标系中画出点A、B、C、D,连接AC,BD,CD.(2)点E在坐标轴上,且S△BCE=S四边形ABDC,求满足条件的点E的坐标.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在线段BD上移动时(不与B,D重合)证明:∠DCP+∠BOP∠CPO几何变换之平移巩固练习1.如图,在平面直角坐标系中,△ABC的顶点C的坐标为(1,3).(1)请直接写出点A、B的坐标;(2)若把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,画出△A′B′C′;(3)直接写出△A′B′C′各顶点的坐标;(4)求出△ABC的面积.【分析】(1)根据A,B两点的位置写出坐标即可.(2)分别作出A,B,C的对应点A′,B′,C′即可.(3)根据点的位置写出坐标即可.(4)利用分割法求面积即可.【解答】解:(1)A(﹣1,﹣1),B(4,2).(2)如图,△A′B′C′即为所求.(3)A′(1,2),B′(6,5),C′(3,6).(4)S△ABC=4×5−12×2×4−【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.2.三角形ABC在正方形网格中的位置如图所示,网格中每个小方格的边长为1个单位长度,请根据下列提示作图.(1)将三角形ABC向上平移3个单位长度,再向右平移2个单位长度得到三角形A'B'C',画出三角形A'B'C'.(2)连接AC',BC',则三角形ABC'的面积为7.5.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A'B'C'即为所求.(2)S△ABC′=1故答案为:7.5.【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.3.如图,△ABC向左平移3个单位,再向上平移1个单位得到△A1B1C1.已知A(2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标;(2)求△ABC的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求解即可.【解答】解:(1)如图,△A1B1C1即为所求,A1(﹣1,2),B1(2,4),C1(0,5).(2)S△ABC=3×3−12×1×2−12【点评】本题考查坐标与图形平移,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.4.如图,在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a(1)求A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(﹣2,t),若三角形ABC的面积为8,求点D的坐标.【分析】(1)利用非负数的性质即可解决问题;(2)如图中,设直线CD交y轴于E.首先求出点E的坐标,再求出直线CD的解析式以及点C坐标,利用平移的性质可得点D坐标.【解答】解:(1)∵|2a﹣b﹣1|+a+2b−8又∵:|2a﹣b﹣1|≥0,a+2b−∴2a−解得a=2b=3∴A(0,2),B(3,0);(2)如图1中,设直线CD交y轴于E.∵CD∥AB,∴S△ACB=S△ABE,∴12×AE×∴12×∴AE=16∴E(0,−10设直线AB的解析式为y=kx+2,把B(3,0)坐标代入得k=∵直线AB的解析式为y=−2∴直线CD的解析式为y=−23把C(﹣2,t)代入y=−23x−∴C(﹣2,﹣2),将点C向下平移2个单位,向右平移3个单位得到点D,∴D(1,﹣4).【点评】本题考查三角形综合题、非负数的性质、平行线的性质、一次函数的应用等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.5.如图,在平面直角坐标系中,点A(2,6),B(4,3),将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为A',B',连接AA'交y轴于点C,BB'交x轴于点D.(1)线段A'B'可以由线段AB经过怎样的平移得到?并写出A',B'的坐标;(2)求四边形AA'B'B的面积;(3)P为y轴上的一动点(不与点C重合),请探究∠PCA′与∠A'DB'的数量关系,给出结论并说明理由.【分析】(1)利用平移变换的性质解决问题即可.(2)利用分割法确定四边形的面积即可.(3)分两种情形:点P在点C的上方,点P在点C的下方,分别求解即可.【解答】解:(1)∵点A(2,6),B(4,3),又∵将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,∴线段A′B′是由线段AB向左平移4个单位,再向下平移6个单位得到,∴A′(﹣2,0),B′(0,﹣3).(2)S四边形ABB′A′=6×9﹣2×12×(3)连接AD.∵B(4,3),B′(0,﹣3),∴BB′的中点坐标为(2,0)在x轴上,∴D(2,0).∵A(2,6),∴AD∥y轴,同法可证C(0,3),∴OC=OB′,∵A′O⊥CB′,∴A′C=A′B′,同法可证,B′A′=B′D,∴∠A′DB=∠DA′B′,∠A′CB′=∠A′B′C,当点P在点C的下方时,∵∠PCA′+∠A′CB′=180°,∠A′B′C+∠DA′B′=90°,∴∠PCA′+90°﹣∠A′DB′=180°,∴∠PCA′﹣∠AD′B′=90°,当点P在点C的上方时,∠P′C′A′+∠A′DB′=90°.【点评】本题考查坐标与图形变化﹣平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.6.如图,在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(4,0),现将线段AB向右平移一个单位,向上平移4个单位,得到线段CD,点P是y轴上的动点,连接BP;(1)当点P在线段OC上时(如图一),判断∠CPB与∠PBA的数量关系;(2)当点P在OC所在的直线上时,连接DP(如图二),试判断∠DPB与∠CDP,∠PBA之间的数量关系,请直接写出结论.【分析】(1)利用三角形的外角的性质解决问题即可.(2)分三种情形:当点P在线段OC上时,当点P在线段OC的延长线上时,当点P在CO的延长线上时,分别求解即可.【解答】解:(1)如图一中,结论:∠CPB=90°+∠PBA.理由:∠CPB+∠APB=180°,∠APB+∠PAB+∠PBA=180°∴∠CPB=∠POB+∠PBA,∠POB=90°,∴∠CPB=90°+∠PBA.(2)①如图二中,当点P在线段OC上时,结论:∠DPB=∠CDP+∠PBA.理由:作PE∥CD.∵AB∥CD,PE∥CD,∴PE∥AB,∴∠CDP=∠DPE,∠PBA=∠EPB,∴∠DPB=∠DPE+∠BPE=∠CDP+∠PBA.②如图二①中,当点P在线段OC的延长线上时,结论:∠PBA=∠PDC+∠DPB.理由:设BP交CD于T.∵CD∥OB,∴∠PTC=∠PBA,∵∠PTC=∠PDC+∠DPB,∴∠PBA=∠PDC+∠DPB.③如图二②中,当点P在CO的延长线上时,结论:∠PDC=∠PBA+∠DPB.理由:设PD交AB于T.∵CD∥OB,∴∠PDC=∠PTA,∵∠PTA=∠PDC+∠DPB,∴∠PDC=∠PBA+∠DPB.综上所述,∠DPB=∠CDP+∠PBA或∠PBA=∠PDC+∠DPB或∠PDC=∠PBA+∠DPB.【点评】本题考查平移变换,平行线的性质,三角形的内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7.如图,在平面直角坐标系xOy中,点A(a,b),B(m,n)分别是第三象限与第二象限内的点,将A,B两点先向右平移h个单位,再向下平移1个单位得到C,D两点(点A对应点C).(1)写出C,D两点的坐标;(用含相关字母的代数式表示)(2)连接AD,过点B作AD的垂线l,E是直线l上一点,连接DE,且DE的最小值为1.①若b=n﹣1,求证:直线l⊥x轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(x,y)都是这个方程的一个解.在①的条件下若关于x,y的二元一次方程px+qy=k(pq≠0)的图象经过点B,D及点(s,t),判断s+t与m+n是否相等,并说明理由.【分析】(1)根据平移规律解决问题即可..(2)①证明A,D的纵坐标相等即可解决问题②如图,设AD交直线l于J,首先证明BJ=DJ=1,推出D(m+1,n﹣1),再证明p=q,即可解决问题.【解答】解:(1)由题意,C(a+h,b﹣1),D(m+h,n﹣1).(2)①∵b=n﹣1,∴A(a,b),D(m+h,n﹣1),∴点A,D的纵坐标相等,∴AD⊥x轴,∵直线l⊥AD,∴直线l⊥x轴.②如图,设AD交直线l于J,∵DE的最小值为1,∴DJ=1,∵BJ=1,∴D(m+1,n﹣1)∴二元一次方程px+qy=k(pq≠0)的图象经过点B,D,∴mp+nq=k,(m+1)p+(n﹣1)q=k,∴p﹣q=0,∴p=q,∴m+n=k∵tp+sp=k,t+s=k∴m+n=t+s.【点评】本题考查坐标与图形的变化﹣平移,二元一次方程等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.在△ABC中,∠ABC=90°,AB=BC=2,点M是线段BC的中点,点N在射线MB上,连接AN,平移△ABN,使点N移动到点M,得到△DEM(点D与点A对应,点E与点B对应),DM交AC于点P.(1)若点N是线段MB的中点,如图1.①依题意补全图1;②求DP的长;(2)若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若MQ=DP,求CE的长.【分析】(1)利用平移的性质画出图形,再利用相似得出比例式,即可求出线段DP的长.(2)根据条件MQ=DP,利用平行四边形的性质和相似三角形的性质,求出BN的长即可解决.【解答】解:(1)①如图1,补全图形:②连接AD,如图1.在Rt△ABN中,∵∠B=90°,AB=2,BN=1∴AN=1∵线段AN平移得到线段DM,∴DM=AN=1由平移可得,AD=NM=12,AD∥∴△ADP∽△CMP.∴DPMP∴DP=13DM(2)如图2,连接NQ,由平移知:AN∥DM,且AN=DM.∵MQ=DP,∴PQ=DM.∴AN∥PQ,且AN=PQ.∴四边形ANQP是平行四边形.∴NQ∥AP.∴∠BQN=∠BAC=45°.又∵∠NBQ=∠ABC=90°,∴BN=BQ.∵AN∥MQ,∴ABBQ又∵M是BC的中点,且AB=BC=2,∴2NB∴NB=2∴ME=BN=2∴CE=2【点评】本题考察的是等腰三角形的性质与相似三角形的综合应用,利用相似比求线段长是重难点,按题意画出图形是解决本题的关键.9.如图,已知AB∥CD,点E在直线AB,CD之间.(1)求证:∠AEC=∠BAE+∠ECD;(2)若AH平分∠BAE,将线段CE沿CD平移至FG.①如图2,若∠AEC=90°,HF平分∠DFG,求∠AHF的度数;②如图3,若HF平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由.【分析】(1)过E作EF∥AB,可得∠A=∠AEF,利用平行于同一条直线的两直线平行得到EF与CD平行,再得到一对内错角相等,进而得出答案;(2)①HF平分∠DFG,设∠GFH=∠DFH=x,根据平行线的性质可以得到∠AHF的度数;②设∠GFD=2x,∠BAH=∠EAH=y,根据角平分线的性质以及平行线的性质即可得到∠AHF与∠AEC的数量关系.【解答】解:(1)如图1,过点E作直线EN∥AB,∵AB∥CD,∴EN∥CD,∴∠BAE=∠AEN,∠DCE=∠CEN,∴∠AEC=∠AEN+∠CEN=∠BAH+∠ECD;(2)∵AH平分∠BAE,∴∠BAH=∠EAH,①∵HF平分∠DFG,设∠GFH=∠DFH=x,又CE∥FG,∴∠ECD=∠GFD=2x,又∠AEC=∠BAE+∠ECD,∠AEC=90°,∴∠BAH=∠EAH=45°﹣x,如图2,过点H作l∥AB,易证∠AHF=∠BAH+∠DFH=45°﹣x+x=45°;②设∠GFD=2x,∠BAH=∠EAH=y,∵HF平分∠CFG,∴∠GFH=∠CFH=90°﹣x,由(1)知∠AEC=∠BAE+∠ECD=2x+2y,如图3,过点H作l∥AB,易证∠AHF﹣y+∠CFH=180°,即∠AHF﹣y+90°﹣x=180°,∠AHF=90°+(x+y),∴∠AHF=90°+12∠AEC.(或2∠AHF﹣∠【点评】此题考查了平行线的性质,熟练掌握平行线的性质作出辅助线是解本题的关键.10.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.【分析】(1)直接利用角平分线的性质结合平行线的性质得出∠CAE以及∠ECA的度数,进而得出答案;(2)直接利用角平分线的性质结合平行线的性质得出∠CAE以及∠ECA的度数,进而得出答案;(3)直接利用角平分线的性质结合平行线的性质得出∠1和∠2的度数,进而得出答案.【解答】解:(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.【点评】此题主要考查了角平分线的定义以及平行线的性质等知识,正确应用平行线的性质是解题关键.11.如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=12∠(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣112°=68°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=12∠AOC(2)∠OBC:∠OFC的值不变.∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=14∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论