2025届湖南省邵阳市邵阳县德望中学高考数学三模试卷含解析_第1页
2025届湖南省邵阳市邵阳县德望中学高考数学三模试卷含解析_第2页
2025届湖南省邵阳市邵阳县德望中学高考数学三模试卷含解析_第3页
2025届湖南省邵阳市邵阳县德望中学高考数学三模试卷含解析_第4页
2025届湖南省邵阳市邵阳县德望中学高考数学三模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省邵阳市邵阳县德望中学高考数学三模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为()A. B. C. D.2.已知数列的前项和为,且,,则()A. B. C. D.3.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.4.设集合,,若,则的取值范围是()A. B. C. D.5.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是()A. B. C. D.6.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.7.已知数列中,,(),则等于()A. B. C. D.28.已知,,那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.如图所示,矩形的对角线相交于点,为的中点,若,则等于().A. B. C. D.10.若平面向量,满足,则的最大值为()A. B. C. D.11.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.12.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的极大值为________.14.的展开式中的系数为________.15.设复数满足,其中是虚数单位,若是的共轭复数,则____________.16.在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.18.(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.19.(12分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中,若的值最大,求实数的取值范围.20.(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.21.(12分)如图,在三棱柱中,、、分别是、、的中点.(1)证明:平面;(2)若底面是正三角形,,在底面的投影为,求到平面的距离.22.(10分)的内角,,的对边分别为,,已知,.(1)求;(2)若的面积,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.2、C【解析】

根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.3、D【解析】

首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.【点睛】题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4、C【解析】

由得出,利用集合的包含关系可得出实数的取值范围.【详解】,且,,.因此,实数的取值范围是.故选:C.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.5、D【解析】

利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.【详解】在函数的解析式中,令,可得,则点,直线的方程为,矩形中位于曲线上方区域的面积为,矩形的面积为,由几何概型的概率公式得,所以,.故选:D.【点睛】本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.6、D【解析】

设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法7、A【解析】

分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:∵,(),

…,

∴数列是以3为周期的周期数列,

故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.8、B【解析】

由,可得,解出即可判断出结论.【详解】解:因为,且.,解得.是的必要不充分条件.故选:.【点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.9、A【解析】

由平面向量基本定理,化简得,所以,即可求解,得到答案.【详解】由平面向量基本定理,化简,所以,即,故选A.【点睛】本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.10、C【解析】

可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,,,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.11、A【解析】

根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.12、D【解析】

根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.【点睛】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.14、80.【解析】

只需找到展开式中的项的系数即可.【详解】展开式的通项为,令,则,故的展开式中的系数为80.故答案为:80.【点睛】本题考查二项式定理的应用,涉及到展开式中的特殊项系数,考查学生的计算能力,是一道容易题.15、【解析】

由于,则.16、【解析】

设是中点,由于分别是棱的中点,所以,所以,所以四边形是平行四边形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四边形是矩形.而.从而.故答案为:.【点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)或或【解析】

(1)(2)首先用基本不等式得到,然后解出不等式即可【详解】(1)因为所以(2)当时所以当且仅当即时等号成立因为存在,且,使得成立所以所以或解得:或或【点睛】1.要熟练掌握绝对值的三角不等式,即2.应用基本不等式求最值时要满足“一正二定三相等”.18、(1),;(2);(3)不能,证明见解析【解析】

(1)求出,结合导数的几何意义即可求解;(2)构造,则原题等价于对任意恒成立,即时,,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.【详解】(1),,曲线在点处的切线方程为,,解得.(2)记,整理得,由题知,对任意恒成立,对任意恒成立,即时,,,解得,当时,对任意,,,,,即在单调递增,此时,实数的取值范围为.(3)关于的方程不可能有三个不同的实根,以下给出证明:记,,则关于的方程有三个不同的实根,等价于函数有三个零点,,当时,,记,则,在单调递增,,即,,在单调递增,至多有一个零点;当时,记,则,在单调递增,即在单调递增,至多有一个零点,则至多有两个单调区间,至多有两个零点.因此,不可能有三个零点.关于的方程不可能有三个不同的实根.【点睛】本题考查了导数几何意义的应用、利用导数研究函数单调性以及函数的零点存在性定理,考查了转化与化归的数学思想,属于难题.19、(1),ξ的分布列为ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

(2)【解析】(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列为ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

ξ的数学期望为E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范围是.20、(1);(2)【解析】

(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.【详解】(1)设,则圆心的坐标为,因为以线段为直径的圆与轴相切,所以,化简得的方程为.(2)由题意,设直线,联立得,设(其中)所以,,且,因为,所以,,所以,故或(舍),直线,因为的周长为所以.即,因为.又,所以,解得,所以.【点睛】本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论