




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页参考答案:1.C【分析】过作的平行线交于,通过证明≌,得,再由是等边三角形,即可得出.【详解】解:过作的平行线交于,,是等边三角形,,,是等边三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等边三角形,,,,,,故选:C.【点睛】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键.2.C【分析】过作的平行线交于,通过证明≌,得,再由是等边三角形,即可得出.【详解】解:过作的平行线交于,,是等边三角形,,,是等边三角形,,在中和中,,≌,,于,是等边三角形,,,,,,故选:C.【点睛】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键.3.B【分析】①如图,过点分别作的垂线交及的延长线于点,证明,,即可得结论;②延长至,使,连接证明,取的中点,连接并延长至,使得,可得,证明,,则可得,即,;③由①可知,故不一定等于;④,由②可知,,则,由可得即可得【详解】解:①如图,过点分别作的垂线交及的延长线于点,AB=AD,AC=AE,,AH⊥BC同理可得又故①正确②如图,延长至,使,连接,如图,取的中点,连接并延长至,使得,是的中点,,,又③如图,由①可知,故不一定等于故③不正确④如图,由②可知,故④正确综上所述,故正确的有①②④故选B【点睛】本题考查了三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.4.【分析】延长到E,使,连接,证,推出,根据三角形的三边关系求出即可.【详解】解:延长到E,使,连接∵的中线,∴,在中,,∴,∴,根据三角形的三边关系得:,∴,∵,∴,故答案为:.【点睛】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出是解此题的关键.5.##【分析】如图,延长至F,使得,交于点G,通过“边角边”证明,则,根据题意与三角形的外角性质可得,进而可得,设,根据题意得到关于x的方程,然后求解方程即可.【详解】解:如图,延长至F,使得,交于点G,∵点E是的中点,∴,在与中,,∴,∴,∵,∴,∵,∴,∴,∴,
设,∵,∴,解得,即.故答案为:【点睛】本题主要考查全等三角形的判定与性质,等腰三角形的判定,三角形的外角性质,解此题的关键在于熟练掌握其知识点,根据中点作出适当的辅助线.6.【分析】延长到E,使得,连接,利用全等三角形的判定与性质和三角形的三边关系定理解答即可.【详解】解:延长到E,使得,连接,如图,在和中,,∴,∴.∵,∴,∴.故答案为:.【点睛】本题考查了全等三角形的判定和性质,三角形的三边关系,熟练运用全等三角形的判定是本题的关键.7.6【分析】延长至N,使,连接,证明,推出,,求出,再证明即可.【详解】证明:延长AM至N,使,连接,∵点M为的中点,∴,在和中,,∴,∴,,∴,∵,,∴,∴,∴,在和中,,∴,∴.故答案为:6.【点睛】本题考查了全等三角形的判定和性质,主要考查学生的推理能力,延长至N,使,再证即可,这就是“倍长中线”,实质是“补短法”.8.54°【分析】根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案【详解】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x,∵CP平分∠ACD,∴∠ACP=∠PCD=x,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=36°,∴∠ABP=∠PBC=∠PCD-∠BPC=(x-36°),∴∠BAC=∠ACD-∠ABC=2x-(x-36°)-(x-36°)=72°,∴∠CAF=108°,在Rt△PFA和Rt△PMA中,PA=PA,PF=PM,∴RtRt(HL),∴∠FAP=∠PAC=54°.故答案为:54°.【点睛】此题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解决问题的关键.9.##【分析】在上取一点T,使得,连接,在上取一点K,使得,连接.想办法证明,推出,推出即可解决问题.【详解】解:在上取一点T,使得,连接,在上取一点K,使得,连接.∵,,,∴,∴,,∵,∴,∵,∴,∴,∴,∴,
∴,∴,∴,∵,∴,故答案为:.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.10.(1)BE=AD,见解析;(2)BEG是等腰直角三角形,见解析【分析】(1)延长BE、AC交于点H,先证明△BAE≌△HAE,得BE=HE=BH,再证明△BCH≌△ACD,得BH=AD,则BE=AD;(2)先证明CF垂直平分AB,则AG=BG,再证明∠CAB=∠CBA=45°,则∠GAB=∠GBA=22.5°,于是∠EGB=∠GAB+∠GBA=45°,可证明△BEG是等腰直角三角形.【详解】证:(1)BE=AD,理由如下:如图,延长BE、AC交于点H,∵BE⊥AD,∴∠AEB=∠AEH=90°,∵AD平分∠BAC,∴∠BAE=∠HAE,在△BAE和△HAE中,,∴△BAE≌△HAE(ASA),∴BE=HE=BH,∵∠ACB=90°,∴∠BCH=180°﹣∠ACB=90°=∠ACD,∴∠CBH=90°﹣∠H=∠CAD,在△BCH和△ACD中,,∴△BCH≌△ACD(ASA),∴BH=AD,∴BE=AD.(2)△BEG是等腰直角三角形,理由如下:∵AC=BC,AF=BF,∴CF⊥AB,∴AG=BG,∴∠GAB=∠GBA,∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠GAB=∠CAB=22.5°,∴∠GAB=∠GBA=22.5°,∴∠EGB=∠GAB+∠GBA=45°,∵∠BEG=90°,∴∠EBG=∠EGB=45°,∴EG=EB,∴△BEG是等腰直角三角形.【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.11.见解析【分析】在BC上截取BE=BA,连接DE,证明△ABD≌△BED,可得出∠C=∠DEC,则DE=DC,从而得出AD=CD即可证明.【详解】证:如图,在BC上截取BE=BA,连接DE,∵BD=BD,∠ABD=∠CBD,∴△BAD≌△BED,∴∠A=∠DEB,AD=DE,∵∠A+∠C=180°,∠BED+∠DEC=180°,∴∠C=∠DEC,∴DE=DC,∴AD=CD,∴点D在线段AC的垂直平分线上.【点睛】本题考查全等三角形的判定与性质,以及垂直平分线的判定等,学会做辅助线找出全等三角形是解题的关键.12.(1)证明见解析;(2)2.5;(3)100°.【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,,再由三角形内角和可求,,进而可得.【详解】解:(1)、分别是与的角平分线,,,,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,,,∴,在与中,,∴(SAS)∴,∴,∴,∴在与中,,,,,;∵,,∴(3)如解(3)图,延长BA到P,使AP=FC,,∴,在与中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.13.AC+BD=AB,理由见见解析【分析】在BA上截取BF=BD,连接EF,先证得,可得到∠BFE=∠D,再由AC∥BD,可得∠AFE=∠C,从而证得,可得AF=AC,即可求解.【详解】解:AC+BD=AB,证明如下:在BA上截取BF=BD,连接EF,如图所示:∵AE、BE分别平分∠CAB和∠ABD,∴∠EAF=∠EAC,∠EBF=∠EBD,在△BEF和△BED中,,∴(SAS),∴∠BFE=∠D,∵AC∥BD,∴∠C+∠D=180°,∵∠AFE+∠BFE=180°,∴∠AFE+∠D=180°,∴∠AFE=∠C,在△AEF和△AEC中,,∴(AAS),∴AF=AC,∵AF+BF=AB,∴AC+BD=AB.【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.14.(1)AB-BD=CB,证明见解析.(2)BD-AB=CB,证明见解析.【分析】(1)仿照图(1)的解题过程即可解答.过点C作CE⊥CB于点C,与MN交于点E,根据同角(等角)的余角相等可证∠BCD=∠ACE及∠CAE=∠D,由ASA可证△ACE≌△DCB,然后由全等三角形的对应边相等可得:AE=DB,CE=CB,从而确定△ECB为等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解题思路同(1),过点C作CE⊥CB于点C,与MN交于点E,根据等角的余角相等及等式的性质可证∠BCD=∠ACE及∠CAE=∠D,由ASA可证△ACE≌△DCB,然后由全等三角形的对应边相等可得:AE=DB,CE=CB,从而确定△ECB为等腰直角三角形,由勾股定理可得:BE=CB,由BE=AE-AB,可得BE=BD-AB,即BD-AB=CB.【详解】解:(1)AB-BD=CB.证明:如图(2)过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AB-AE,∴BE=AB-BD,∴AB-BD=CB.(2)BD-AB=CB.如图(3)过点C作CE⊥CB于点C,与MN交于点E,∵∠ACD=90°,∠BCE=90°,∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE-AB,∴BE=BD-AB,∴BD-AB=CB.【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质等.注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.15.(1)见解析;(2)∠DCF=45°.【分析】(1)由垂直定义可得∠CAD=∠ACB=90°,再根据题意得∠EAF=∠DAF,即可证得结论;(2)过点F作FM⊥FA交AC于点M,由“AAS”可证△AEF≌△MCF,可得∠AFE=∠MFC,EF=DF,可证△CDF是等腰直角三角形,可得∠DCF=45°.【详解】证明:(1)∵AD⊥AC,BC⊥AC,∴∠CAD=∠ACB=90°,∵AC=BC,∴∠BAC=∠B=45°,∴∠EAF=180°﹣∠BAC=135°,∠DAF=∠CAD+∠BAC=135°,∴∠EAF=∠DAF,在△EAF和△DAF中,,∴△EAF≌△DAF(SAS);(2)如图2,过点F作FM⊥FA交AC于点M,∵FA⊥FM,∠FAM=45°,∴∠FMA=45°=∠FAM,∴FA=FM,∠FMC=∠FAE=135°,∵EF=FC,∴∠FEM=∠FCA,在△AEF和△MCF中,,∴△AEF≌△MCF(AAS),∴∠AFE=∠MFC,EF=DF,∵△EAF≌△DAF,∴∠EFA=∠DFA,∴∠DFA=∠MFC,∴∠AFM=∠DFC=90°,∵DF=EF=CF,∴△CDF是等腰直角三角形,∴∠DCF=45°.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.16.(1);(2),见解析;(3)44°或104°;详见解析.【分析】(1)根据等边对等角,可得,,再根据三角形外角的性质求出,由此即可解题;(2)在AC边上取一点M使AM=AB,构造,根据即可得出答案;(3)画出图形,根据点E的位置分四种情况,当点E在射线CB延长线上,延长CA到G,使AG=AB,可得,可得,设,则;根据∠BAC=24°,AD为△ABC的角平分线,可得,可证(SAS),得出,利用还有,列方程;当点E在BD上时,∠EAD<90°,不成立;当点E在CD上时,∠EAD<90°,不成立;当点E在BC延长线上,延长CA到G,使AG=AB,可得,得出,设,则;∠BAC=24°,根据AD为△ABC的角平分线,得出,证明(SAS),得出,利用三角形内角和列方程,解方程即可.【详解】解:(1)∵AE=AD=DC,∴,,∵,,∴,∵AD为△ABC的角平分线,即,∴;∴(2)如图2,在AC边上取一点M使AM=AB,连接MP,在和中,,∴(SAS),∴,∵,,∴,∴;(3)如图,点E在射线CB延长线上,延长CA到G,使AG=AB,∵AB+AC=EC,∴AG+AC=EC,即,∴,设,则;又∠BAC=24°,AD为△ABC的角平分线,∴,又∵,∴,,∴,在和中,,∴(SAS),∴,又∵,∴,解得:,∴;当点E在BD上时,∠EAD<90°,不成立;当点E在CD上时,∠EAD<90°,不成立;如图,点E在BC延长线上,延长CA到G,使AG=AB,∵AB+AC=EC,∴AG+AC=EC,即,∴,设,则;又∵∠BAC=24°,AD为△ABC的角平分线,∴,又∵,∴,,∴,在和中,,∴(SAS),∴,∴,解得:,∴.∴∠ACB的度数为44°或104°.【点睛】本题主要考查了等腰三角形性质、全等三角形判定和性质,角平分线,三角形外角性质,三角形内角和,解一元一次方程,根据角平分线模型构造全等三角形转换线段和角的关系是解题关键.17.(1)见解析;(2)见解析;(3)【分析】(1)过点分别作于点,交的延长线于点,根据角平分线的性质可得,结合已知条件HL证明,继而可得,根据平角的定义以及等量代换即可证明;(2)过点分别作于点,交的延长线于点,过点作,根据含30度角的直角三角形的性质可得,根据三线合一,可得,进而可得,根据角平分线的判定定理可推出,进而即可证明;(3)先证明四边形是矩形,证明,进而证明四边形是正方形,设,根据(2)的结论以及三角形内角和定理,求得,进而求得,根据含30度角的直角三角形的性质,即可求得,进而在中,勾股定理即可求得的长.【详解】(1)如图,过点分别作于点,交的延长线于点,平分,,在与中(HL)即(2)如图,过点作交的延长线于点,过点作,,即(3)如图,过点分别作于点,交的延长线于点,,四边形是矩形在与中,四边形是正方形设在中在中,【点睛】本题考查了三角形全等的性质与判定,角平分线的性质与判定,三角形内角和定理,三角形的外角性质,勾股定理,正方形的性质与判定,正确的添加辅助线是解题的关键.18.(1)1<AD<5;(2)见解析;(3)AF+EC=EF,见解析【分析】(1)证明,推出CE=AB=4,在中,利用三角形的三边关系解决问题即可.(2)如图2中,延长ED到H,使得DH=DE,连接DH,FH.证明,推出BE=CH,再证明EF=FH,利用三角形的三边关系即可解决问题.(3)结论:AF+EC=EF.延长BC到H,使得CH=AF.提供两次全等证明AF=CE,EF=EH即可解决问题.【详解】(1)∵CD=BD,AD=DE,∠CDE=∠ADB,∴(SAS),∴EC=AB=4,∵6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为:1<AD<5;(2)如图2中,延长ED到H,使得DH=DE,连接DH,FH.∵BD=DC,∠BDE=∠CDH,DE=DH,∴(SAS),∴BE=CH,∵FD⊥EH,又DE=DH,∴EF=FH,在△CFH中,CH+CF>FH,∵CH=BE,FH=EF,∴BE+CF>EF;(3)结论:AF+EC=EF.理由:延长BC到H,使得CH=AF.∵∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠DCH+∠BCD=180°,∴A=∠DCH,∵AF=CH,AD=CD,∴(SAS),∴DF=DH,∠ADF=∠CDH,∴∠ADC=∠FDH,∵∠EDF=∠ADC,∴∠EDF=∠FDH,∴∠EDF=∠EDH,∵DE=DE,∴(SAS),∴EF=EH,∵EH=EC+CH=EC+AF,∴EF=AF+EC.【点睛】本题考查了全等三角形的判定和性质,三角形的中线的性质,三角形的三边关系等知识,解题的关键是学会倍长中线,构造全等三角形解决问题,属于中考常考题型.19.(1)∠DEF=∠ACE,证明见解析;(2)见解析;(3)k【分析】(1)由三角形外角的性质可得出答案;(2)连接CD,过点E作AC的平行线与CD交于点M,证明△DEF≌△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冠词用法大解密:英语进阶学习技巧教学教案
- 低空经济对环境监测技术的推动
- 美术设计领域艺术创作证明(7篇)
- 移动支付安全协议服务合同
- 八年级物理下册随堂特训期中综合检测题
- 甘肃省兰州市兰州三十一中-九年级英语-unit-4-Section-A-人教新目标版
- 建设工程劳务分包合同(范应泉)
- 【数学】简单的轴对称图形(第1课时)等腰三角形的性质课件-2024-2025学年北师大版七年级数学下册
- 音乐类文化IP的全球传播模式与影响分析
- 项目管理培训以数据科学为核心的知识分享
- 2024年国家电网考试真题及答案分享
- 第13课 《告别“小拖拉”》教学设计-2023-2024学年心理健康一年级苏教版
- 云南省2024年7月普通高中学业水平考试 数学试题
- GB/T 10810.1-2025眼镜镜片第1部分:单焦和多焦
- 2025年保育员实操初级参考标准课件
- 哪吒主题课件模板文档
- 2025届湖北省武汉市十一校中考生物对点突破模拟试卷含解析(一)
- 国开本科《人文英语3》期末机考总题库及答案
- 高中数学复习 导数压轴大题归类 (原卷版)
- 临床粪便隐血
- 空乘礼仪知识培训课件
评论
0/150
提交评论