版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省抚州市南城一中高考仿真模拟数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种 B.44种 C.48种 D.54种2.若不等式对于一切恒成立,则的最小值是()A.0 B. C. D.3.已知为实数集,,,则()A. B. C. D.4.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为()A. B. C. D.5.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.6.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是()A. B.3 C. D.8.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.9.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.210.若,则“”是“的展开式中项的系数为90”的()A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件11.函数图像可能是()A. B. C. D.12.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A. B.1 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.14.已知全集,,则________.15.设、满足约束条件,若的最小值是,则的值为__________.16.在中,角,,的对边分别为,,,若,且,则面积的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修44:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.18.(12分)已知,,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.19.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围.20.(12分)在三角形中,角,,的对边分别为,,,若.(Ⅰ)求角;(Ⅱ)若,,求.21.(12分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;22.(10分)已知椭圆的离心率为,且过点,点在第一象限,为左顶点,为下顶点,交轴于点,交轴于点.(1)求椭圆的标准方程;(2)若,求点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.【点睛】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.2、C【解析】
试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题3、C【解析】
求出集合,,,由此能求出.【详解】为实数集,,,或,.故选:.【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题.4、B【解析】
计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.5、D【解析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.6、D【解析】
求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.7、D【解析】
设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或..故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.8、C【解析】
由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件.故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.9、C【解析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.10、B【解析】
求得的二项展开式的通项为,令时,可得项的系数为90,即,求得,即可得出结果.【详解】若则二项展开式的通项为,令,即,则项的系数为,充分性成立;当的展开式中项的系数为90,则有,从而,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.11、D【解析】
先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.12、D【解析】
建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,∵,,,∴,设抛物线,代入点,可得∴焦点为,即焦点为中点,设焦点为,,,∴.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【点睛】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.14、【解析】
利用集合的补集运算即可求解.【详解】由全集,,所以.故答案为:【点睛】本题考查了集合的补集运算,需理解补集的概念,属于基础题.15、【解析】
画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,,解得.故答案为:.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.16、【解析】
利用正弦定理将角化边得到,再由余弦定理得到,根据同角三角函数的基本关系表示出,最后利用面积公式得到,由基本不等式求出的取值范围,即可得到面积的最值;【详解】解:∵在中,,∴,∴,∴,∴.∵,即,当且仅当时等号成立,∴,∴面积的最大值为.故答案为:【点睛】本题考查正弦定理、余弦定理解三角形,三角形面积公式的应用,以及基本不等式的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
试题分析:利用将极坐标方程化为直角坐标方程:化简为ρcosθ+ρsinθ=1,即为x+y=1.再利用点到直线距离公式得:设点P的坐标为(2cosα,sinα),得P到直线l的距离试题解析:解:化简为ρcosθ+ρsinθ=1,则直线l的直角坐标方程为x+y=1.设点P的坐标为(2cosα,sinα),得P到直线l的距离,dmax=.考点:极坐标方程化为直角坐标方程,点到直线距离公式18、(1)见解析;(2)最大值为.【解析】
(1)将函数表示为分段函数,利用函数的单调性求出该函数的最小值,进而可证得结论成立;(2)由可得出,并将代数式与相乘,展开后利用基本不等式可求得的最小值,进而可得出实数的最大值.【详解】(1).当时,函数单调递减,则;当时,函数单调递增,则;当时,函数单调递增,则.综上所述,,所以;(2)因为恒成立,且,,所以恒成立,即.因为,当且仅当时等号成立,所以,实数的最大值为.【点睛】本题考查含绝对值函数最值的求解,同时也考查了利用基本不等式恒成立求参数,考查推理能力与计算能力,属于中等题.19、(1)AB的中点的横坐标为;(2)证明见解析;(3)【解析】
设.(1)因为直线的倾斜角为,,所以直线AB的方程为,联立方程组,消去并整理,得,则,故线段AB的中点的横坐标为.(2)根据题意得点,若直线AB的斜率为0,则直线AB的方程为,A、C两点重合,显然M,B,C三点共线;若直线AB的斜率不为0,设直线AB的方程为,联立方程组,消去并整理得,则,设直线BM、CM的斜率分别为、,则,即=,即M,B,C三点共线.(3)根据题意,得直线GH的斜率存在,设该直线的方程为,设,联立方程组,消去并整理,得,由,整理得,又,所以,结合,得,当时,该直线为轴,即,此时椭圆上任意一点P都满足,此时符合题意;当时,由,得,代入椭圆C的方程,得,整理,得,再结合,得到,即,综上,得到实数的取值范围是.20、(Ⅰ)(Ⅱ)8【解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根据同角的三角函数的关系和两角和的正弦公式和正弦定理即可求出.【详解】(Ⅰ)由余弦定理,所以,所以,即,因为,所以;(Ⅱ)因为,所以,因为,,由正弦定理得,所以.【点睛】本题考查利用正弦定理与余弦定理解三角形,属于简单题.21、(1)(2)【解析】
(1)将,利用三角恒等变换转化为:,,再根据正弦函数的性质求解,(2)根据,得,又为的内角,得到,再根据,利用两角和与差的余弦公式求解,【详解】(1),,,,即的值域为;(2)由,得,又为的内角,所以,又因为在中,,所以,所以.【点睛】本题主要考查三角恒等变换和三角函数的性质,还考查了运算求解的能力,属于中档题,22、(1);(2)【解析】
(1)由题意得,求出,进而可得到椭圆的方程;(2)由(1)知点,坐标,设直线的方程为,易知,可得点的坐标为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年核苷类药物项目提案报告范文
- 2024-2025学年邢台市巨鹿县数学三上期末考试模拟试题含解析
- 2024-2025学年新疆维吾尔昌吉州奇台县数学三年级第一学期期末达标检测模拟试题含解析
- 去药厂实习报告范文汇编5篇
- 2024-2025学年西安市碑林区三上数学期末学业质量监测试题含解析
- 2024年版企业劳动合同及员工劳动保障合同版B版
- 2025年板卧式电除尘器项目规划申请报告模范
- 2024年期多边投资补偿协议样本一
- 大学实习报告范文合集10篇
- 暑假银行实习报告汇编十篇
- 灯检检漏一体机安装、运行和性能确认方案
- 《汉字真有趣》ppt课件完美版
- 三级创伤急救中心建设方案
- 北风和小鱼 (3)
- 消防设施验收移交单
- 塔式起重机塔吊安全管理
- 教师教学质量评估表(学生用)
- 中国各大煤矿煤炭指标
- 浙美版1-6年级美术作品与作者整理
- 国内外有关生产流程优化研究发展现状
- 高标准基本农田土地整治项目工程施工费预算表
评论
0/150
提交评论