南开大学-生物化学-各章习题与答案_第1页
南开大学-生物化学-各章习题与答案_第2页
南开大学-生物化学-各章习题与答案_第3页
南开大学-生物化学-各章习题与答案_第4页
南开大学-生物化学-各章习题与答案_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章蛋白质化学

1.何谓蛋白质的等电点?其大小和什么有关系?

2.经氨基酸分析测知hng某蛋白中含有45ug的亮氨酸(MW131.2),23.2ug的酪氨酸(MW204.2),问该蛋白质的最低

分子量是多少?

3.一四肽与FDNB反应后,用6moi/L盐酸水解得DNP-Val.及三种其他氨基酸。当这种四肽用胰蛋白随水解,可得到

两个二肽,其中一个肽可发生坂口反应,另一个肽用LiBHi还原后再进行水解,水解液中发现有氨基乙醇和一种与苗三

酮反应生成棕褐色产物的氨基酸,试问在原来的四肽中可能存在哪几种氨基酸,它们的排列顺序如何?

4.一大肠杆菌细胞中含1()个蛋白质分子,每个蛋白质分子的平均分子量为4()000,假定所有的分子都处于a螺旋构

象。计算其所含的多肽链长度?

5.某蛋白质分子中有一40个氨基酸残基组成的肽段,折叠形成了由2条肽段组成的反平行?折叠结构,并含有一?转

角结构,后者由4个氨基酸残基组成。问此结构花式的长度约是多少?

6.某一蛋白样品在聚丙烯酸胺凝胶电泳(PAGE)上呈现一条分离带,用十二烷基硫酸钠(SDS)和硫基乙静处理后再进

行SDS-2AGE电泳时得到等浓度的两条分离带,问该蛋白质样品是否纯?

7.”-Gly—Pro—Lys—Gly—Pro—Pro—Gly—Ala—Ser—Gly—Lys—Asn-w是新合成的胶原蛋白多肽链的一部分

结构,问:

1)哪个脯氨酸残基可被羟化为4一羟基脯氨酸?

2)哪个脯氨酸残基可被羟化为3—羟基肺氨酸?

3)哪个赖氨酸残基可被羟化?

4)哪个氨基酸残基可与糖残基连接?

8.一五肽用胰蛋白酶水解得到两个肽段和一个游离的氨基酸,其中一个肽段在280rnn有吸收,且Panly反应、坂口反

应都呈阳性;另一肽段用汉化氟处理释放出一个可与年三酮反应产生棕褐色产物的氨基酸,此肽的氨基酸排列顺序如

何?

9.研究发现,多聚一L-Lys在pH7.0呈随机螺旋结构,但在pH10为a螺旋构象,为什么?预测多聚一L-Glu在什

么pH条件下为随机螺旋,在什么川下为a螺旋构象?为什么?

10.Tropomyosin是由两条a螺旋肽链相互缠绕构成的超螺旋结构。其分子量为7()()0(),假设氨基酸残基的平均分子

量为110,问其分子的长度是多少?

11.某肽经CNBr水解得到三个肽段,这三个肽的结构分别是:Asn—Trp—Gly-Met,Gly-Ala—Leu,Ala—Arg—Tyr

-Asn-Met:用胰凝乳蛋白酶水解此肽也得到三个肽段,其中一个为四肽,用6mol/L盐酸水解此四肽只得到(Asp)2

和Met三个氨基酸,问此肽的氨基酸排列顺序如何?

12.列举蛋白质主链构象的单元及它们的主要结构特征。

13.试比较蛋白质的变性作用与沉淀作用。

14.将一小肽(pl=8.5)和Asp溶于pH7.0的缓冲液中,通过阴离子交换树脂柱后,再进行分子排阻层析,那么Asp

和小肽哪一个先从凝胶柱上被洗脱下来,为什么?

15.从理论和应用上说明有机溶剂、盐类、SDS、有机酸等对蛋白质的影响。

16.血红蛋白和肌红蛋白都具有氧合功能,但它们的氧合曲线不同,为引么?

17.为什么无水明可用于鉴定C-端氨基酸?

18.Anfinsen用核糖核酸酶进行的变性一复性实验,在蛋白质结构方面得出的重要结论是什么?

19.蛋白质分离纯化技术中哪些与它的等电点有关?试述这些技术分嘲提纯蛋白质的原理。

20.根据卜列资料推出某肽的氨基酸排列顺序。

1)完全酸水解得到Phe、Pro、Glu、(Lys)2、Met和NH3

2)用FDNB试剂处理得到DNP—Phe

3)川澳化氟水解此肽得到一个以高丝氨酸内酯结尾的二肽和一个四肽

4)用胰蛋白醐水解可产生两个三肽

5)用狡肽酶A或按肽酶B处理都不能得到阳性结果

21.高致病的厌氧细菌与气性坏疽(gasgangrene)病有关。它使动物组织的结构破坏。因该菌体内有胶原的

(collagenase),它可催化一X-Gly-Pro-Y—(X、Y是任一氨基酸)结构中一X—Gly之间的肽键断裂,问该能使

动物组织结构破坏的机理是H么?为H么它对细菌自身没有破坏作用?

22.一血红蛋白的电泳迁移率异常,用胰蛋白酶水解结合指纹图谱分析发现它的B链N-端的胰蛋白酶肽段只有6个氨

基酸组成,而正常血红蛋白B链N-端的胰蛋白的肽段为ValTlis-Leu-Thr-Asp-Glu-Glu-Lys,问:

1)导致上述结果的原因是什么?

2)请比较HbA、HbS及这个异常血红蛋白在pH8.0条件下电泳时的甩泳迁移率。

23.细菌视紫红质(Bacteriorhodopsir)是嗜盐细菌盐牛.盐杆菌紫色质膜的惟一蛋白质组分,所以称为细菌视紫红质。

因为它含有视黄醛辅基(retinal,故是紫色的),犹如动物的视紫纥质。细菌视紫红质的分于量为26000,X一射线

分析揭示出其分子中由7个平行排列的a螺旋肽段,且每一螺旋肽段都横跨细胞膜(膜厚度为4.5nrn,即该蛋白横

穿质膜7次之多,每一跨膜片段为一a螺旋)。其功能是作为光驱动的跨膜泵(质子泵),为细胞提供能量。

1)计算每一螺旋肽段要完全横跨细胞膜最少要有多少个氨基酸残基组成此段螺旋?

2)估计此蛋白的跨膜螺旋部分占全部分子的百分数。

24.某五肽完全水解后得到等摩尔的丙、半胱、赖、苯丙和丝氨酸。用PITC分析得到PTH-Ser;用胰蛋白酶水解得到

一个N一端为CySH的三肽和一个N一端为丝的二肽;靡蛋白酶水解上述三肽生成丙和另一个二肽,该五肽的结构如何?

26.原肌球蛋白(tropomyosin)的分子量为93000,而血红蛋白的分子量为65000,为什么原肌球蛋白的沉降系数

比血红蛋白的小?

27.

1)为制备柠檬酸合成酶(CS),将牛心组织匀浆后,为什么先经差速离心法分离出线粒体后再进行下一步的纯化?

2)将线粒体裂解,向裂解液中加人硫酸胺到一定的浓度,然后离心保留上清液;向上清液中再加人硫酸胺粉末至所

需要的浓度,离心,倒掉JJ青保留沉淀,这些操作的FI的是H么?

3)接着,将盐析所得到的柠檬酸合成陋粗制品对阴7.2的缓冲液透析,为什么不用水?透析的目的是什么?4)

将上述处理所获得的CS粗制品进行分子排阻层析,在280nm下检测是否有蛋白被洗出:实验者保留第一个洗脱峰进行

下一步的纯化,为什么?

5)实验者将经分子筛层析所得到的CS样品又选用阳离子交换剂进行分离,上样平衡后,改用高pH的缓冲液洗脱,

为什么?

28.许多蛋白质富含二硫键,它们的抗张强度,黏性,硬度等都与它们的二硫键含量有关。

1)蛋白质的抗张强度、硬度等性质与二硫键含量之间关系的分子基础是什么?

2)多数球蛋日被加热到65匕即变性丧失活性,但富含二硫键的蛋白质如牛胰腺蛋白酶抑制剂(BFTI)需在高温下长

时间加热才变性。该抑制剂含58个氨基酸、一条肽链、有三对二硫键。热变性的BPTI在冷却的条件下可以恢兔其活

性,为什么?

29.何谓疏水的相互作用?为什么说非极性溶剂、去污剂可使蛋白质变性?

30.为什么二磷酸甘油酸(BPG)可降低血红蛋白与氧的亲和力?

31.将含有Asp(pl=2.98)、Gly(pl=5.97)、Thr(pl=6.53)、Leu(pl=5.98)、Lys(pl=9.74)的pH

为3.0的柠檬酸缓冲液,加到预先用同样缓冲液平衡过的阳离子交换树脂柱上,随后用该缓冲液洗脱此柱,问这五种

氨基酸将按何种顺序被洗脱?

32.从下列资料推出一肽的氨基酸排列顺序。

1)含有Phe,Pro,Glu,(Lys)2:

2)Edman试剂处埋生成PTH-Glu

3)用胰蛋白酶、粉肽酶A和B处理都不能得到任何较小的肽和氨基酸

33.多聚L—Leu肽段在二氧杂环己烷(dioxane)存在时可形成a螺旋结构,但多聚L-He不能,为什么?

34.一次突变,某蛋白质分子内的一个丙氨酸转变为缀氨酸导致该蛋白质生物活性的丢失;然而在另一次突变时,由

于•个异亮氨酸转变为甘氨酸而使该蛋白质的活性恢复了,请分析可能的原因是什么?

35.甘氨酸是蛋白质进化中高度保守的氨基酸残基吗?为什么?

36.在p:I7.0时蛋白质分子中能与精氨酸侧链形成氢键或静电的相互吸引的侧链基团是哪些?

37.多数蛋白质分子中蛋氨酸和色氨酸的含量较低,而亮氨酸和丝氨酸等的含量较高;有趣的是:蛋氨酸和色氨酸都

只有一个密码子与之对应,而亮和丝等有多个密码子。请分析•:一个氨基酸密码子的数目与它在蛋白质中出现的频率

之间的关系及这种关系的生物学意义是什么?

38.从蛋白质的一级结构可预测它的高级结构。下面是一段肽链的氨基酸排列顺序:“L-A-H-T-Y-G-P-F-Z

(Q)-A-A-M-C-K-W-E-A-Z(Q)-P-D-G-M-E-C-A-F-H-R",问:

1)你认为此段肽链的何处会出现在B转角结构?

2)何处可形成链内(intra-)二硫键?

3)假定上述顺序是一个大的球蛋白分子中的一部分结构,指出D、I、T、A、Z(Q)、K氨基酸残基可能在蛋白质

分子的表面还是内部?

39.以丙氨酸为例说明为什么等电状态的氨基酸应以两性离子而不是中性分子的形式存在?

40.从下列资料推出一个肽的氨基酸排列顺序:

1)用6mol/L盐酸完全水解此肽结合氨基酸,分析可知,此肽含有甘、亮、苯丙和酪四种氨基酸,且甘:亮:苯丙:

酪=2:1:1:1

2)用2,4一二硝基氟苯(FDNP)试剂处理此肽得到了DNP一酪氨酸,无自由的酪氨酸产生。

3)用胃蛋白酶水解此肽得到两个肽段,一个二肽含苯丙氨酸和亮氨酸,一个三肽含酪氨酸及2个甘氨酸。

1.蛋白质是两性电解质,既可与酸,又可与碱相互作用。溶液中蛋白质的带电情况,与它所处环境的pH值有关。调

节溶液的pH值,可以使一个蛋白质带正电或带负电或不带电;在某一pH时,蛋白质分子中所带的正电荷数目与负电

荷数相等,即静电荷为零,在电场中不移动,此时溶液的pH值即为该种蛋白质的等电点。

蛋白质的等电点主要取决于该蛋白质的氨基酸组成。含碱性氨基酸多的蛋白质其等电点要比含酸性氨基酸多的

蛋白质的等电点高(大);此外,蛋臼质的解离情况与所处环境的pH值、离子强度、离子的种类等有关.所以蛋白

质的等电点不是•个精确的固定值,与测定时所用的缓冲液的性质、pH、离子强度等有关。

2.根据亮氨酸含量计算的最低分子量为:

lX10-3g/45X10-6g=最低分子量/131.2

最低分子量=2915.6

根据色氨酸含量计算的最低分子量为:

lX10-3g/23.2X10%-最低分子量/204.2

最低分子量=8801.7

根据氨基酸残基计算最低分子量的原理,一般是假定在一个蛋白质分子中只有一个该氨基酸残基存在。

亮和色的摩尔数比率是:

(45/131.2)/(23.2/204.2)=0.343/0.114=3

因此,该蛋白质的最小分子量应是每分子中含有3个亮氨酸残基,1个色氨酸残基时的分子量。即:2915.6X

3=8746.8或8801.7XI

3.Vai—Arg-Gin(或Asn)—Gly

LiBHa是一个特殊的还原剂,能使孩酸直接还原为静而不经醛中间物。

4.(40000/110)X0.15nmX10=546nm

5.构成?折叠结构的氨基酸残基数为36个,每条应有18个氨基酸残基。在?折叠结构中每两个相邻的氨基酸残基的

轴心距为0.35nrn,故18X0.35nm等于6.3nm(至少为6.3nm)。

6.该蛋白质样品是均一的。PAGE电泳法的分辨率很高,在这种电泳中只得到一条分离带,说明纯度很好。在SDS

电泳中得到等浓度的两条分离带,证实该蛋白含有两个亚基,而不含有杂质。

7.

1)和2)脯氨酸羟化能不能使游离的脯氨酸进行羟基化。在胶原分子中,甘氨酸氨基端的脯氨酸可被羟化为个羟

基脯氨酸,甘痰基端的脯氨酸可被羟化为3一羟基脯氨酸。

3)在甘氨酸氨基端的赖氨酸(3位的赖)可被羟基化为羟赖氨酸,在甘氨酸竣基端的赖氨酸(11位的赖)可被

羟基化为3—羟赖氨酸。

4)3—羟赖氨酸可连接糖残基。

8.Tyr—Arg—Lys—Met—Gin(Asn)

9.在pl17.()时赖氨酸侧链上的£氨基带正电荷,它们之间的静电排斥作用阻止了a螺旋的形成。在plIlO时,由

于接近赖氨酸的等电点,侧链是非质子化的状态,允许a螺旋的形成,对多聚一L—Glu来说,在pH7.0时,由于

侧链按基都带负电荷,它们之间的静电排斥,将干扰a螺旋的形成,应呈随机螺旋状态,在接近谷氨酸侧链的pK值

为4.25〜4.。时,因谷氨酸的侧链羟基是非质子化的,应呈螺旋构象。

10.由于是两条链构成的超螺旋结构,每条链的分子量为35000。而氨基酸残基的平均分子量为110,故每条肽链

应含有318个氨基酸残基(35000/110),318X0.15um,等于47.7nrn长。

11.根据条件1,该肽的可能顺序为:

Ala—Arg—Tyr—Asn-Met—Asn-Trp-Gly-Met-Glif—Ala-Lou;

由于胰凝乳蛋白酶专•性水解芳香组氨基酸的核基所形成的肽键,所得到的三个肽段的可能结构为:

Ala-Arg-TyrAsn-Met-Asn-TrpGly-Met-Gly-Ala-Leu

由于在酸水解时,色氨酸易被破坏,AsnAsp,推知其中的一个肤段为:

Asn-Met-Asn-Trp

综上所述,某肽的氨基酸顺序为:

Ala-Arg—Tyr—Asn—Met-Asn—Trp-Gly-Met-Gly-Ala-Leu

12.

1)a螺旋(a—helix)结构,其结构特征为:

(1)从外观看;a螺旋结构是一个类似棒状的结构。紧密卷曲的多肽链构成了棒的中心部分,侧链R伸出到螺

旋排布的外面。完成一个螺旋需3.6个狗基酸残基。螺旋每上升一圈相当于向上平移0.54nm,即螺旋的螺距为0.54nm。

相邻两个氨基酸残基之间的轴心距为0.15nmo

(2)a螺旋结构的稳定主要靠链内的氢键。氢键形成于第一个氨基酸的羟基与线性顺序中笫五个氨基酸的氨基

之间。氢键环内包含13个原子,因此称这种螺旋为3.6(13)螺旋。

(3)大多数蛋白质中存在的a螺旋均为右手螺旋。a螺旋的国际表示法,以m表示。n指每个螺旋中所包含的

氨基酸残基数;s指氢键环内共价键所连接的原子数。

2)B折叠结构(B—Pleatedsheet)的结构特征

B折叠结构乂称为B折叠片层结为,B结构等。B折叠结构的形成一般需要两条或两条以上的肽段共同参与,

即两条或多条几乎完全伸展的多肽链侧向聚集在一起,相邻肽链主链上的氨基和默基之间形成有规则的氢键,维持

这种片层结构的稳定。这样的多肽链构象就是B折叠结构。B折叠结构的特点是:

(1〕在这种结构中,所有的肽键都参与了链间氢健的形成,氢键与肽链的长轴近于垂直。

(2:在B折叠中,多肽主链是比较伸展的,取锯齿状折叠构象;相邻的两个氨基酸之间的轴心距为0.35nmo

侧锥R交替地分布在片层平面的上方和下方,以避免相邻侧链R之间的空间障碍。

(3)B折叠结构有平行和反平行两种。在反平行的B折叠结构中,相邻肽链的走向相反,但氢键近于平行。

在平行的B折叠结构中,相邻肽链的定向相同,氢键不平行。

3)8转角结构,其结构特征是:

也称为B弯曲,B回折,发夹结构,U型转折等。蛋白质分子的多肽链在形成空间构象时,经常会出现180°

的回折(转折),回折处的结构就称为B转角结构。一般有四个连续的氨基酸组成。在构成该种结构的四个氨基酸

残基中,第一个氨基酸的验基和第四个氨基酸的氨基之间形成氢键。甘氨酸和肺氨酸易出现在这种结构中;在某些

蛋白质,如嗜热菌蛋白附中有三个连续的氨基酸形成的B转角结构。氢键形成于第一个氨基酸磷基氧和第三个氨基

酸亚氨基的氢之间。

13.

1)蛋白质的变性作用:蛋白质因受某些物理的或化学的因素的影响,分子的空间构象破坏,从而导致其理化性质,

生物学活性改变的现象称为蛋白质的变性作用。强酸,强碱,剧烈搅拌,重金属盐类,有机溶剂,脉,肌类,超声

波等都可使蛋白质变性。

2)蛋白质的沉淀作用:由于水化层和双电层的存在,蛋白质溶液是一种稳定的胶体溶液。如果向蛋白质溶液中加

入某种电解质,以破坏其颗粒表面的双电层或调节溶液的pH,使其达到等电点,蛋白质颗粒因失去电荷变得不稳定

而将沉淀析出。这种由于受到某些因素的影响,蛋白质从溶液中析出的作用称为蛋白质的沉淀作用。

如重金属盐类、有机溶剂、生物碱试剂等都可使蛋白质发生沉淀,且不能用透析等方法除去沉淀剂而使蛋白质

重新溶解于原来的溶剂中,这种沉淀作用称为不可逆的沉淀作用。如果向蛋白质溶液中加入大量的盐类,如硫酸较,

蛋白质的溶解度逐渐下降,以致从溶液中沉淀出来,若用透析等方法除去使蛋白质沉淀的因素后,可使蛋白质恢复

原来的溶解状态。此种沉淀作用称为可逆的沉淀作用。

沉淀的蛋白质不一定变性失活,但变性后的蛋白质一般失去活性,

14.小肽。

15.在有机酸如TCA、磺基水杨酸等存在下,绝大多数蛋白质带正电荷;可与酸根负离子形成不溶性复合物而沉淀析

出,在临床上,预分析血液中的游离氨基酸的量,向血液中加入TCA,使蛋白质沉淀,离心取上清液即可用于氨基

酸的分析。

有机溶剂如丙酮、乙醇等,可使蛋白质沉淀。因有机溶剂使蛋白质脱水,介电常数降低。应用:制备有活性的

酶或蛋白质性质的激素等常用丙酮将材料制成于粉以便于保存:用乙醉抽提制备某些醇溶性蛋白。

SDS:卜二烷基硫酸钠,是一种阴离子去污剂,表面带大量的负电荷。可与蛋白质的疏水性基团结合使蛋白质变

性。蛋白质分子愈大,结合的SDS量愈多;负电性愈大。因而在电场中的迁移速度不同。SDS—PAGE电泳法测定蛋白

质的分子量即根据此原理。在核酸制备中用SDS破坏膜结构,除蛋白、核酸酶等。

盐类:在低盐溶液中,大多数蛋白质的溶解度增加;在高盐溶液中,由于蛋白质分子表面的电荷被中和,破坏

了双电层,蛋白质将沉淀析出。不同蛋白质氨基酸组成不同,在不同盐浓度的溶液中溶解行为不同,可用盐析法沉

淀蛋白质。

重金属盐类:在碱性条件下,蛋白质带负电,可与重金属离子如汞离子,铅离子结合,形成不溶性的重金属蛋

白盐沉淀。因此,长期从事重金属作业的人,应吃高蛋白食物,以防止重金属离子被机体吸收。临床上,常用醋酸

铅或硫酸铜沉淀体液中的蛋白质,以分析体液中的氨基酸或其他小分子化合物。

生物碱是植物组织中具有显著生理作用的一类含氮的碱性物质。能够沉淀生物碱的试剂称为生物碱试剂。如单

宁酸、苦味酸、三氯乙酸等都能沉淀生物碱,故称它们为生物碱试剂,在酸性条件下,蛋白质带正电荷,可与生物

碱试剂,如三氯乙酸的酸根离子结合成为溶解度较小的盐类而沉淀。

“柿石症”的产生就是由于空腹吃了大量的柿子,柿子中含有单宁酸,使肠胃中的蛋白质凝固变性而成为不能

被消化的“柿石”。

16.•血红蛋白有两条a链和两条B链组成。血红蛋白的a链和B链与肌红蛋白的构象十分相似,尤其是B链。

它们所含的氨基酸种类、数目、氨基酸的排列顺序都有较大的差异,但它们的三级结构十分相似。使它们都具有基

本的氧合功能。但血红蛋白是一个四聚体,它的分子结构要比肌红蛋白复杂得多;因此除了运输氧以外,还有肌红

蛋白所没有的功能。如运输质子和二氧化碳。

血红蛋白的氧合曲线为S形,而肌红蛋白的氧合曲线为双曲线,S形曲线说明血红蛋白与氧的结合具有协同性。

脱氧血红蛋白分子中,它的四条多肽链的C端都参与了盐桥的形成。由于多个盐桥的存在,使它处于受约束的

强制状态。当一个疑分子冲破了某种阻力和血红蛋白的一个亚基结合后,这些盐桥被打断,使得亚基的构象发生改

变,从而引起邻近亚基的构象也发生改变,这种构象的变化就更易于和氧的结合;并继续影响第三个、第四个亚基

与氧的结合,故表现出S型的氧合曲线。

17.在无水腓存在卜°,除C端氨基酸外,其他氨基酸均转变为氨基酸酸朋的衍生物,加入苯甲醛,后者又转变为二

苯基衍竺物,不溶于水。经离心分离,C一端氨基酸在水相,向水相中加入2,4一二硝基氟苯与其反应,可得到相

应的2,4一二硝基苯氨基酸,经色谱分析可鉴定之。

18.蛋白质的一级结构决定其高级结构。核糖核酸酶,一条肽链经不规则折叠而形成一个近似于球形的分子。构象

的稳定除了氢键等非共价键外,还有4个二硫键。C.Anfinsen发现,在8moi眠素和少量流基乙醇存在下,酶分子

中的二疏键全部还原,酶的三维结构破坏,活性丧失。当用透析方法慢慢除去变性剂和疏基乙醇后,发现酶的大部

分活性恢复;因为二硫键重新形成。这说明完全伸展的多肽链能自动折叠成其活性形式;若将还原后的核糖核酸能

在8moi服素中重新氧化,产物只有1%的活性,因为硫氨基没有正确的配对。变性核糖核酸酶的8个硫氢基相互配

对形成二硫键的几率是随机的(1/7X1,/5X1/3=1/105种可能的配对方式,但只有一种是正确的),实验发现,复性

过程中RNase接与天然RNase相同的连接方式形成二硫键,这是由于蛋白质的高级结构,包括二硫键的形成都是由

一级结构决定的。

攻上蠢佥说献蛋白质的变性是可逆的,变性蛋白在一定的条件下之所以能自动折叠成天然的构象,是由于形

成复杂的三维结构所需要的全部信息都包含在它的氨基酸排列顺序上,蛋白质分了多肽链的氨基酸排列顺序包含了

自动形成正确的空间构象所需要的全部信息,即一级结构决定其高级结构。由于蛋白质特定的高级结构的形成”出

现了它特有的生物活性。

19.

1)等电点沉淀法,蛋白质是两性化合物,在等电点时其溶解度最小。不同蛋白质氨基酸组成不同,等电点不同,

调节蛋白质混合溶液的pH值,可使他们分次沉淀出。

2)离子交换纤维素层析,常用的纤维素衍生物有CM一纤维素(分子中带有竣甲基基团,一。一CH?—C00H)和

DEAE一纤维素(阴离子交换剂,带有二乙氨基乙基基团)。

蛋白质与离子交换纤维素的结合能力取决于彼此间相反电荷基团的静电吸引,在某一pH条件下,不同蛋白质氨基酸

组成不同,pl不同,所带的静电荷性质、数量不同,与离子交换纤维素的吸附能力不同。通过改变洗脱液的pH和离

子强度,可把不同的蛋白质依次洗脱下来.

3)电泳法(聚丙烯酎胺凝胶电泳、等电聚焦)。

20.Phe-Met-Lys-Gln-Lys-Pro0

21.因细菌含有胶原酶,该酶专一性水解动物的结缔组织,因结缔组织中的主要蛋白质是胶原蛋白,其一级结构中

存在一X-Gly—Pro-Y—顺序,允许细菌入侵宿主细胞,而细菌本身无胶原蛋白。

22.

1)赖氨酸或精氨酸取代了正常血红直白B链的第六位谷氨酸。导致用胰蛋白酶水解时产生了只有6个氨基酸组

成的肽段。

2)在加8.0时,血红蛋白都带负电荷,应向正极移动。由于异常血红蛋白分子中的第六位变成了一个碱性氨基

酸(HbA第六位是Glu,HbS第六位是Vai);因此,在pH8时,HbA所带的净电荷数最多,HbS次之,异常Hb所带

的净电荷数最少,向正极移动的速度为:

异常血红蛋白<HbS<HbA

23.

i)在a螺旋结构中,每一个氨基酸残基的高度为0.15nm,所以

4.5/0.15=30个AA

2)30(因每一螺旋要跨膜至少应含30个氨基酸残基)X7=210个M,从其分子量知共含26000/110=236个AA

残基,所以210/236=89(%)。

24.Ser-Lys-Cys-Phe-Ala

26.因原肌球蛋白为棒状结构,血红蛋白为球状,后者在超速离心场中所受到的摩擦阻力小。

27.

1)柠檬酸合成酶主要存在于线粒体,差速离心法可使线粒体与其他细胞器相互分离。

2)第一次加硫酸核后离心要上清液,是为了除去杂蛋白;向上清液中再加入硫酸钱,离心要沉淀,因CS在沉淀

部分。

3)透析是为了除去硫酸钱,为获得天然构象的CS,用pH7.2的缓冲液透析而不能用水。

4)在分离的样品中,CS分子量最大,故首先被洗出;大多数蛋白质含有色和酪氨酸,在280um下有吸收,故常用

此波长检测。

5)说明CS带正电荷,改用高pH缓冲液洗脱,使CS所带电荷的性质改变,易于从阳离子交换柱上被洗脱下来。

28.

1)因为二硫犍是共价键,这使许多蛋白质结构稳定的基础。因为二硫键使蛋白质多肽链之间形成共价交联,增加

了蛋白质的抗张强度、硬度等。如谷蛋白是一种富含二硫键的蛋白质,小麦面团的黏性、弹性即是由于二硫键的存

在。乌龟外壳坚硬,是由于它的a角蛋白中大量二硫键的存在。

2)二硫键可防止蛋白质多肽链在不利条件下转变为完全伸展的状态。故在适宜的条件下构象可恢复。

29.是由于疏水基团为避开水相而相互靠近。蛋白质分子中有许多疏水的氨基酸,蛋白质的多肽链在盘绕折叠形成

特定的构象时,这些疏水侧链相互靠近趋向于分子内部以减少其与水的界面,这是蛋白质空间构象形成的驱动力之

一,称为疏水力或称为疏水的相互作用。

1959年,Kauzmann从热力学的角度对疏水的相互作用进行了分析研究后指出,非极性化合物从水中转移到有机

溶剂中时,伴随着端的增加。设想两个疏水基团原来和水接触,经过变化,两个疏水基团相互接触,除了它们自身

的吸引力外,还有将它周围一部分排列整齐的水分子排入自由的水中,使水分子的混乱度增加;由于炳是体系混乱

度的衡量,体系越混乱,其端越大。因此两个疏水基团的相互吸引将伴随着端的增大。反过来说,由于燃增是自发

过程,是一个使体系能量趋于极小即能量上有利的过程,所以疏水的相互作用是嫡所驱动的。非极性溶剂、去污剂

等可破坏疏水的相互作用,因此是蛋白质变性剂。

30.研究发现,当BPG不存在时,血红蛋白与氧的亲和力强;BPG与血红蛋白结合后可极大地降低血红蛋白对氧的亲

和力,降低的程度依赖于BPG/Hb的比值。BPG存在于人的红细胞中,与血红蛋白的摩尔分数相同,是红细胞内糖

在无氧或暂时缺氧情况卜.分解代谢的特殊产物。如高原缺氧,心肺功能不全或贫血时,均可使2,3一二磷酸甘油酸

产生增加。血红蛋白和BPG结合后,氧合曲线向右移,因此,BPG的存在使血红蛋白结合氧的能力降低,即释放氧的

展增加I,以满足组织的需要。但BPG只影响脱氧血红蛋白与氧的结合能力,不会影响氧合血红蛋白与氧的亲和力。

从血红蛋白的构象看,它的4个亚基相互靠近,分子的中央有1个孔穴。X射线结构分析证实了BPG是结合在这

个孔穴内。在生理pH条件下,BPG带有负电荷,可与附近两条B链上带正电荷的残基如His2,Lys82和IIisl43形

成盐键。加之原来的8个盐键,使血红蛋白处于粒定的不易和氧结合的状态。在氧合血红蛋白中,由于分子中的盐

键被打断,血红蛋白的四级结构发生了相当大的变化,两条B链的H螺旋相互靠近,使分子中央的孔穴变小而不能

容纳BPG分子;同时两条B链末端NH?基之间的距离变大,不能与BPG形成盐键,大大降低了对BFG的亲和力。

31.洗脱顺序为:Asp,Gly,Thr,Leu,Lys

32.Glu—Phe—Lys—Pro—Lys

33:因异亮氨酸的B碳原子上有一甲基,干扰了a螺旋结构的形成。在亮氨酸分子中,甲基位于T碳原子上,远

离主链,不会干扰a螺旋结构的形成。

34.第一次突变时丙氨酸转变成了缄氨酸,因后者的侧链较大,使蛋白质的构象改变;另一次突变后由于异亮氨酸

转变为甘氨酸,甘氨酸的侧链较小(和内氨酸相似),补偿了第一次突变造成的影响。

35.甘氨酸是20种氨基酸中侧链最小的一个氨基酸。正因为如此,它的存在使多肽链能形成紧密的盘绕折叠(t。make

tightturns)或相互靠近。

36.有谷氨酸和天门冬氨酸的末端竣基(C00")能与精氨酸的A瓜基形成静电吸引;精氨酸的胭基还可作为氢键的供

体,与谷氨酸胺、天门冬酰胺、丝氨酸、苏氨酸以及主链的竣基形成氢键。

37.一般来说,蛋白质分子中常出现的氨基酸,如亮氨酸、丝氨酸等,有较多的密码子;而不常出现的氨基酸的密

码子的数目相对较少。如色飒酸、蛋氨酸。这种关系对保持遗传的稳定性具有重要的生物学意义。使DNA由于碱基

组成的改变或由于一个碱基的突变所造成的密码子改变的几率降到最小。

38.

1)B转角结构很可能出现在7位和19位,即脯氨酸残基处。

2)13位和24位的半肽氨酸之间可能形成二硫键。

3)极性、带电荷的氨基酸如AsP,Gin,Lys一般在分子的表面,而非极性的氨基酸如Ala,Ue可能在分子内部。

苏氨酸尽管有极性,但亲水性指数(hydropathyindex)接近零,故它可能在分子表面或分子内。

39.因为氨基酸的等电pH值大于a—按基的pK值,而小于a—氨基的pK值。因此这两个基团都是带电的。

40.此肽是亮氨酸脑啡肽,其氨基酸顺序为:Tyr-Gly-Gly-Phe-Leuo由条件2知,此肽的N端为酪氨酸,由条

件3知,第3位后的氨基酸应为苯丙氨酸。(胃蛋白酶专一性水解带芳香环的氨基酸的氨基参与形成的肽键)

第二章核甘酸和核酸

1.watson-Crick碱基配对中,膘吟环上还有哪些位置可以形成额外的氢键?

3.请写出双链DNA(5')ATGCCCGTATGCATTC(3*)的互补链顺序。

4.以克为单位计算出从地球延伸到月亮(〜320000km)这么长的双链DNA的质量。已知双螺旋DNA每1000个核苜酸

对重1X10%,每个碱基对长0.34nm(一个有趣的例子是人体一共含DMA0.5g)。

5.假定连续5个多腺甘酸序列(polyA)可使DNA产生20。的弯曲。如果两个脱氧腺甘酸串列(dA)5的中心碱基对分

别相距(a)10个碱基对,(b)15个碱基对,计算这两种情况下DNA的净弯曲。假定DNA双螺旋是10个碱基对一个

螺旋。

6.具有回文结构的单链RNA或DNA可形成发卡结构。这两个发卡结构中的双螺旋部分有何不同?

7.在许多真核生物细胞中有•些高度专一的系统用于修复DNA中的G—T错配。这种错配是由G三C对变成的,这种专

一的G—T错配修复系统对于细胞内一般的修复系统是一种补充,你能说出为什么细胞需要一个专门的修复系统以修复

G—T错配的原因吗?

8.解释为什么双链DNA变性时紫外光吸收增加(增色效应)?

9.有两个分离自未知细菌的DNA样品,它们各含32%和17%的腺喋吟碱基。你估计这两种细菌DNA各自所含的腺喋

吟、鸟噂吟、胸腺喘嘘和胞喀咤的比例是多少?如果这两种细菌中的一种是来自温泉,哪一种菌应该是温泉菌,为什

么?

11.画出下列核酸成分的结构及它们在水中的溶解度顺序(从最易溶到最难溶):脱氧核糖、鸟喋玲、磷酸。请说明

这些成分的溶解度如何与双链DNA的三维结构相协调。

12.外切核酸酶是能够从多核甘酸的一端逐个地切断磷酸二酯键产生单核甘酸的酶。用蛇毒磷酸一.酯酶部分降解(5')

GCGCCAUCGC(3‘0H产生的产物是引么?

13.当环境不再有利于活细胞代谢时,细菌形成内生胞子。例如土壤细菌枯草杆菌,当一种或多种营养素缺乏时,它

们开始范子化过程,终产物是一种小的代谢休眠状态的结构,这种抱子能不定期地存活下来,没有可检出的代谢活动。

抱子在整个休眠期间(可以逾越1000年)有防止积累潜在的致死突变的机制。枯草杆菌抱子有着比生长细胞强得多的

对热、紫外射线、氧化剂这些引起突变的因子的抵抗能力。

A)防止DNA损伤的一个因素是抱子大大减少了水的含量,这种因素能减少哪些类型的突变?为什么?

B)内生胞子有一类被称作小酸溶性蛋白(SASPs)的蛋白,它们能结合于DNA防止环丁烷类二聚物的形成。什么因子

造成DNA环丁烷唯喔二聚物的形成?为什么细菌抱子要有防止它们形成的机制?

14.大肠杆菌噬菌体T2DNA的分子量为120X10、它的头部长约210nm,假定每核甘酸对的分子量为650,计算T2DNA

的长度及它的长度和头部长度的比。

15.噬菌体M13DNA它的碱基组成是A,22%;T,36%;G,21%;C,20%,这个碱基组成说明M13DNA具有什么特

占?

16.已知最简单的细菌一一生殖道支原体的全部基因组是一个含有58)070碱基对的环形DNA分子,计算这个DNA分

子的分子量和它在松弛状态时的周长。这种支原体染色体的Lk。是多少?如果它的。=06它的Lk是多少?

17.从大鼠肝脏分离得到的一个酶有192氨基酸残基,并且已知它是由一个1440bp的基因编码的.解群这个酶的氨基

酸残基数与其基因的核甘酸对之间的关系。

18.一个共价闭合环形DMA分子,当它处于松弛状态,它的Lk=500,这个DNA分子大概有多少个碱基对?出现下列情

况,这个DNA分子的连系数将发生什么变化?1)与一种蛋白复合物结合形成一个核小体;2)DNA的一条链被切断;3)

补加ATP和DNA旋转酶(DNAgyrasc);4)双螺旋DNA被热变性。

19.噬曲体X感染大肠杆菌细胞的一种方式是把它的DNA整合(integration)进人细菌染色体。这个重组过程的成

功和大肠杆菌染色体DNA的拓扑学具有相关性。当大肠杆菌染色体DNA超螺旋密度大于一0.045时,整合的可能性小

于20%;当。值小于一0.06时,这种可能性大于70%。分离自一大肠杆菌培养物的一段DNA长13800bp,其Lk

为1222,计算这段DNA的。值,估计噬菌体X感染这个培养物的可能性。

20.解释为什么负超螺旋的B型DNA可以有利于Z-DNA的形成。

21.从细胞中获得染色质用能降解DNA的内切酶作轻微处理后,并除去所有的蛋白质,把所得的DNA样品用于琼脂糖

凝胶电泳分析,电泳结果表明,DNA形成较宽的有规律的梯状区带,各带的分子展是200bp,400bP,600bP,800bP??o

这个凝胶电泳结果说明什么问题?为什么DNA区带不敏锐?

22.酵母人工染色体(YAC)被用丁在醉母细胞中克隆大的DNA片断。三种什么样的DMA顺序可以保证YAC在酵母细胞

内的复制和繁殖?

23.何谓分子杂交?核酸杂交技术的分子基础是什么?

24.某ATP样品在260nm测的吸收值为1,由表中查知其摩尔消光系数(£)为15.4X10',求此样品中ATP的含量?

设比色杯的厚度为1cm。

25.一双链DNA的一条链中的[A]=0.3,[G]=0.24,问:

1)该条链中的[T]和[C]是多少?

2)该条链的互补链中,[T]、[C]、[A]和[G]应是多少?

26.举例说明能使核酸的化学结构发生改变的物质及其作用机理?

27.DNA对紫外光的吸收是由分子内的叶么基因造成的?变性核酸和天然核酸的紫外吸收有什么区别?

28.核酸有几类?它们在细胞中的分布、功能如何?

29.什么是回文顺序和镜像重复结构?二者结构上的特征是什么?

30.tRNA在二级结构上有什么特征?

31.什么是DNA的熔解温度(Tm)?含60%(G—C)对的DNA与含4。%(G—C)对的DNA的熔解温度有什么区别?

33.简述化学法和双脱氧末端终止法进行DNA序列测定的原理和基本操作方法。

34.写出下列DNA序列互补链的顺序,标出两条链的3'端,找出其中的回文结构部分,指出对称点。“一

GATCGAATTCATGCC-w

35.请举出两种区分DNA和RNA的方法。

36,用二苯胺法测定DNA,必须用同源的DNA作为标准样品吗?为什么?

37.为什么说碱基堆枳作用是一种重要的稳定核酸三维结构的力?

38.20世纪中叶,科学家如何证明DNA是细胞中携带遗传信息的主要物质?

39.与E型DNA比较,Z型DNA结构的特征是什么?

40.为什么DNA含有胸腺喀咤而不含尿嗜咤?

41.何谓DNA拓扑异构酶?DNA拓扑异阂酶的类型及作用特征是什么?

42.何谓超螺旋DNA?

43.何谓修饰核苜?举两例说明常见的修饰核甘的种类。

44.什么是核酸的变性?变性核酸有哪些特征?

45.何谓DNA的复性?变性后的DNA都能复性吗?

1.A、G的N”M

3.其互补链为:(5')GAATGCATACGGGCAT(3')

4.因为每1000个核甘酸对重IX10-'g,每个碱基对长0.34nm,DNA的长度为:

320000km=32X10%=32X1016nm

32X10'nm/0.34nm=94.12X10,3kb

94.12X10,3kbX10,8=94.12X10-1*56*913(g)

5.

1)-dAA-10bp-dAA-,因polyA弯曲方向相同,两个弯曲度之和为40°.

2)dAA—15bp—dAA-,因polyA弯曲方向相反,互相抵消,故为0°。

6.RNA中的螺旋为A型螺旋,DNA中的螺旋为B型螺旋。

7.真核细胞的DNA分子中,约5%的脆喀咤是甲基化的,即为5一甲基胞喀咤;后者可自发脱氨基形成T(胸腺喀口定)

导致G—T错配,这是真核细胞中最常见的错配对形式。因此细胞要有一个专门修复G—T错配的系统,以保证遗传信

息的稳定性。

8.物质在溶剂化、取代反应、氢键断裂等变化时会改变对光的吸收。DNA变性时氢键被打断,并影响碱基堆积,因而

造成对紫外光吸收的增加。

9.DNA1中,因含有32%的A,所以应含有32%的T:而G=C=(1-64%)/2=18%;DNA2中,因含有17%的A,

所以应含有17%的T;而G=C=(1-34%)/2=33%;DNA1的G-C含量比DNA2的小,推知其Tm值小于DNA2,

DNA2应是温泉菌。

11.结构未画出(省略)。三者的溶解性为:磷酸最大,脱氧核糖次之,鸟嗓吟最小。磷酸和核糖极性大,它们在双

螺旋的外面相间通过磷酸二酯键连接成DNA主链。碱基是疏水性的,位于双螺旋的内部。

12.蛇毒磷酸二酯酶是一种核酸外切酶,可作用于DM和RNA。从3'-0H端开始逐个切下5'一核甘酸,每作用一次产

生一个比原核酸链少一个核苜酸的DNA或RNA片段。故产物有9个。

13.

1)大多数代谢反应需要水,其中也包括突变反应。若胞子中的含水量降低,则导致突变的酶的活性降低,使非酶促

的脱喋吟反应速度降低,因脱喋吟反应是水解反应。

2)紫外光可导致环J.烷型喀咤二聚物的形成。因枯草杆菌是一种土壤细菌,抱子可散落在土壤的表面或弥散在空气

中。因此易长时间受到紫外线的照射。因此,细菌胞子要有防止环丁烷型啼咤二聚物形成的机制。

14.120X106/650=18.5X10'bp18.5X10'bpX0.34nm=6.3X1Onm

6.SXIO'nni/210-300即T2DNA的长度是头长的300倍

15.因[A]^[T],[G]X[C],MI3DNA应该是单链DNA分子。

16.

1)分子长度:580070X0.34nm=197223.8nm=197um

2)分子量:650/每对核甘酸X580070=3.77X10’

3)Lk0一580070/10.5=55245

4)。=-0.06,说明该DMA6%被解旋

其Lk为:55245十[55245X(―0.06)]=55245—3315=51930

17.实际为该酶编码的核甘酸残基数为:192X3=576nt,而基因实际长度为1440bp,这个事实表明,这个真核基因

内含内含子顺序,前导顺序或信号顺序。它们在代谢过程中被剪除。

18.Lk=500,这个DNA分子的碱基对总数为5250bp0

1)Lk值不变2)Lk变成不定数

3)Lk减少4)Lk不变

19.。=(Lk-Lko)/Lk,;,Lk..=13800/10.5=1314;

。=(1222-*1314)/1314=-0.07,感染的可能性大于70%。

20.因为Z型DNA的Lk值为负值,负超螺旋处于解螺旋,螺旋不足状态;且负超螺旋DNA是一种较高能量的分子状态,

因此有利于Z-DNA的形成。

21.这个结果表明,染色质的结构单位DNA长约200bp。当用内切能处理染色体时,切点在一定范围之内变化,故DNA

电泳区带不敏锐。

22.着丝粒DNA:端粒DNA、复制原点[大肠杆菌细胞中DNA复制的原点称为oriC。真核细胞中DNA复制的原点称为

自体复制子,缩写为ARS)。

23.将不同来源的DNA样品或DNA与RNA放在一起,热变性后使其缓慢地冷却,若这些异源的核酸分子之间在某些区

段有相互补的顺序,在退火过程中会形成杂合的双链,这个过程称为分子杂交。杂交的双链螺旋分子称为杂交分子。

杂交分子只有在种属比较近的物种之间才有可能形成。囚为分类学上相近的生物,DNA分子往往具有某些相互补的碱基

序列。

核酸杂交技术的分子基础是互补碱基的配对结合。不同来源的DNA或RNA,一起加热变性后再缓慢冷却,若这些异源

DNA之间或RNA之间,或DNA和RNA之间有互补的核苜酸序列时,在退火过程中会形成杂交分子,即所谓的分子杂交。

24.A260nm=eXcXL,c=A260nm/£XL=6.49X10。(m)

25.根据碱基等比规律,[A]+(G)=[T]+[C]

1)[I]+[C]=1—0.3—0.24=0.46

2)T=d.3C=0.24,A+G=O.46

26.

1)脱氨基作用,核酸分子中有些碱基的环外氨基会发生自然的丢失(脱氨)。

2)脱氧核甘酸碱基和戊糖之间糖甘键的断裂。DNA在pH3的溶液中保温会使喋吟全部丢失产生一种叫“无喋吟酸”

的衍生物。

3)紫外光可以诱导两个乙烯基团缩合成环丁烷,类似的反应也可以发生在核酸的两个相邻的喀噬(尤其是胸腺嚏咤

残基)之间,从而形成啥咤二聚物。

4)工业生产产生的活性化学物对环境的污染也可能导致DNA的损伤,如(1)脱氨试剂,特别是亚硝酸或者是能被

代谢成亚硝酸和亚硝酸盐的化学合物:(2)所有烷基化剂(如二甲基硫酸酯,能甲基化鸟喋吟残基声生炉一甲基鸟噂

吟,使它不能和胞唯咤配对)。

27.喋吟碱和嚏咤碱、变性核酸的紫外吸收值比天然核酸的大,因增色效应。

28.核酸有两种:核糖核酸和脱氧核糖核酸。核糖核酸主要存在于细胞质中,但细胞核中也有,如小核RNA、核不均一

性RNA。细胞质中的RNA主要有核糖体RNA,信息RNA(mRNAs)和转移RNA(tRNA)三种。核糖体R\A(rRNAs)是核糖

体的结构成分。核糖体由大、小两个亚基组成,每个亚基都含有一个柱对分子量较大的rRNA和许多大同的蛋白质分了一

真核生物和原核生物的核糖体,其rRNA分子数和分子量也不同。信息RNA是携带一个或几个基因信息到核糖体的核酸,

它们指导蛋白质的合成。转移RNA是把mRNA中的信息准确地翻译成蛋白质中氨基酸顺序的适配器(adapter)分子。

除了这些主要类型的RNA外,还有许多专门功能的RNA,如线粒体RNK口|绿体RNA和病毒RNA等。

脱氧核糖核酸,主要存在于细胞核,但细胞质中也有,如线粒体DNA、叶绿体DMA等,此外还有质粒DNA和一些

病毒DNA等。DNA的功能是储存遗传信息。

29.所谓回文顺序,就像一个单词,一个词组或一个句子,它们从正方向阅读和反方向阅读,其含义都一样。例如:

ROTATOR和NURSESRUN。这个名词被用7描述碱基顺序颠倒重复,因而具有二倍对称的DNA段落。DXA分子上的回文结

构就是反向重复顺序;这样的顺序具有链内互补的碱基顺序,故在单链DNA或RNA中能形成发卡结构;在双链DNA内

能形成十字架结构。如果颠倒重复存在于同•条链,则这种顺序叫做晚像重爱,镜像重复在同•条链内不具有链内互

补顺序,因此不能形成发卡结构和十字架结构。

30.这是由tRNA的特征性二级结构决定的,其结构特征如下。

1)由一条核糖核苛酸链组成,由于多核甘酸链的自身何折,使链内可配对的碱基之间通过氢键形成碱基对,构成了

分子内的螺旋区;而不配对的碱基形成环状突起,这些环状突起好像是三叶草的三片小叶,而与环状突起相连的双螺

旋区构成了三叶草的叶柄,故称tRNA的二级结构为三叶草型结构。

2)根据tRNA分子结构中各部分的功能及碱基组成的特征,tRNA的三叶草结构可分为几个主要的部分(结构区)。

(1)3'端有CCA顺序,在所有的tRNA分子中,3'端均为CCAo在蛋白质生物合成中,tRNA充当搬运工,每种特

定的tRNA所搬运的氨基酸就挂在3'羟基上。故称3'端为氨基酸臂。

(2)TWC环,该环内含有TWC(54〜56位氨基酸)顺序而得名。T为胸腺嚏咤核糖核甘酸,中为假尿喀咤核

甘酸,该环与核糖体的结合有关。

(3)反密码臂(anticodonarm),因含反密码子而得名。密码与反密码之间有互补配对的关系。密码子存在于

mRNA分子_L,在mRNA链,,每三个相邻的核甘酸为一种氨基酸编码,代表了一种氨基酸。这三个相邻的核甘酸被称为

一个密旦子,简称密码。如丙氨酸的密码是GCC,搬运丙氨酸的tRNA分子中的反密码臂中,含有IGC顺序,被称为反

(4)二氢尿嗑咤臂(DHU臂),因该环中含有两个DHU而得名。该环也与核糖体的结合有关。

(5)额外臂(extraarm),它处于T中C臂和反密码子臂之间,在不同的tRNA分子中,该臂所含的核苜酸数目

不同,这可以作为IRNA分类的指标。

31.DNA的变性发生在狭窄温度区间,DNA的变性伴随着紫外吸收的增加。当紫外吸收增加值达总增加值一半时的温度

称为该DMA的熔解温度。含较高(G-C)百分含量的DNA,其Tm值也高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论