版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11设X为一个非负随机变量,其数学期望为E(X(,则对任意ε>0,均有P(X≥ε(≤,望间的关系.设X的分布列为P(X=xi(=pi,i=1,2,⋯,n,其中pi=1,则对任意ε>0,Pxipi≤xipi=其中符号表示对所有满足xi≥ε的指标i所对应的Ai求和.的影响,与之前的n无关.ii,所以,P(B2(=P(A1B2(+P(B1B2(=P(A1(P(B2|A1(+P(B1(P(B2|B1(P(Ai+1(=P(AiAi+1(+P(BiAi+1(=P(Ai(P(Ai+1|Ai(+P(Bi(P(Ai+1|Bi(,即pi+1=0.6pi+(1-0.8(×(1-pi(=0.4pi+0.2,构造等比数列{pi+λ{,设pi+1+λ=(pi+λ(,解得则pi+1-(pi-1-所以当n∈N*时,E(Y(=p1+p2+⋯+pn= A.p1=B.P(X1=2(=C.数列是等比数列D.Xn的数学期望E(Xn(=122利用pn=pn-1+P(Xn-1=0(+P(Xn-1=2(推出pn-=-pn-1-,可判断C;利用P(Xn=0(=P(Xn=2(=可判断D.当n≥2(n∈N∗(时,pn=pn-1+P(Xn-1=0(+P(Xn-1=2(=pn-1+[P(Xn-1=0(+P(Xn-1=2([=pn-1+(1-pn-1(=-pn-1+整理得pn-=-pn-1-,p1-=-=-,P(Xn=1(=pn,P(Xn=0(=×pn-1+P(Xn-1=0(=pn-1+P(Xn-1=0(,P(Xn=2(=×pn-1+P(Xn-1=2(=pn-1+P(Xn-1=2(,因P(X1=0(=P(X1=2(,所以P(Xn=0(=P(Xn=2(=,E(Xn(=0×P(Xn=0(+1×P(Xn=故D正确, n的数学期望E(Xn(为定值.2=n=-×(-n-1+n+pn-1=(2qn-1+pn-1-1(,结合2q1+p1-1=0,由此可得qn=、分布列以及数33n由题意知p1==,q1==,所以p2=p1+q1+(1-p1-q1(=.n=pn-1+qn-1+(1-pn-1-qn-1(=-pn-1+,所以pn-=-pn-1-.所以pn-=-×(-n-1,pn=-×(-n-1+.n=pn-1+qn-1=pn-1+qn-1①,1-qn-pn=pn-1+(1-qn-1-pn-1(=pn-1+(1-qn-1-pn-1(②.所以①-②,得2qn+pn-1=(2qn-1+pn-1-1(.又因为2q1+p1-1=0,所以2qn+pn-1=0.所以qn=.所以Xn的概率分布列为:Xn012p1-pn-pn1-pn2所以Xn的数学期望E(Xn(为定值1. 44=,a1=,b2=,a2=(3)E(Xn(=+n-1n+1=1-bn-an,an+1=bn+an,2=b1+b1+a1=b1+a1=×+×=,a2=b1+a1=×+ -an-bn,nnnn55nnnnn-bn,n+1=bn+bn+an+1-bn-an=1-bn-an.an+1=bn+an,n+1+bn+1-=2n+n(+1-n-n-=n+n-=1n+bn-2an+bn-2an+bn-6,+b1-=,n+bn-=n-1,所以2an+bn=+n-1,E(Xn(=0×(1-an-bn(+1×bn+2an=bn+2an=+n-1.ξ01P1-pPEξ=p,Dξ=p(1-p(.66则Pn+1=0.6Pn+0.2(1-Pn)=0.4Pn+0.2,i-1,由题意得甲第i次投篮次数Yi服从两点分布,且P(Yi=1)=1-P(Yi=0)=Pi,i-1+, 图.77人的概率.解得m=0.012.ξ0123P 8 88表.992442k=1(3)Dξ1<Dξ3<Dξ2所以P(A(估计为=;99P(X=2(=P(ABC-+AB-C+A-BC(=P(A(P(B(P(C-(+P(A(P(B-(P(C(+P(A-(P(B(P(C(=;P(X=3(=P(ABC(=P(A(P(B(P(C(=,则X的分布列为:P P (3)Dξ1<Dξ3<Dξ2 =;==;==;所以Dξ1<Dξ3<Dξ2. 布列.列.X01P 37 47P(Y=0)==,P(Y=1)==.Y01P 7 67若在一次实验中事件发生的概率为p(0<p<1(,则在n次独立重复实验中,在第k次首次发生的概率为p(k(=(1-p(k-1p,k=1,2,⋯,Eξ=。⋯,k,其中k为M与n的较小者,P(ξ=m(=服从参数为N,M,n的超几何分<23.4≥23.4P(K2≥k0(则P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列为:X012P <23.4≥23.466K2===6.4>3.841,(3)s<s<sP(X=0(=C=5P(X=1(=CC=15P所以X的分布列为:X012P x1==0.4,x2==0.3,x3==0.2,x4==0.1,=0.25,所以s==.y1=80=8,y2=80=4,y3=80=4,y4=y1+y2+y3+y41=所以s==.对应的平均数为x1+x2+x3+x4+y1+y2+y3+y4=所以s= =(0.4-0.25(2+(0.3-0.25(2+(0.2-0.25(2+(0.1-0.25(2+-2+-2+-2+-2 =8 所以s<s<s. P(K2≥k0(2P(X=0(=CC=4=1P(X=1(=CC=12=3可得X的分布列为X012P 5 35 5 *3次.E(X(;k则P(X=0(==,P(X=1(==,P(X=2(==,P(X=3(==.X的分布列为X0123P1 数学期望E(X(=0×kP(A1(=1-=,P(A2(=++=,P(A3(=+若在一次实验中事件发生的概率为p(0<p<1(,则在n次独立重复实验中恰好发生k次概率p(ξ=k(=Cpk(1-p(n-k(k=0,1,2,⋯,n(,称ξ服从参数为n,p的二项分布,记作ξ~B(n,p(,Eξ=np,Di=所以X∼B(4,0.25(,所以P(X=0(=(,P(X=1(=C,P(X=4(=C×4=,所以X的分布列为:X01234P 所以E(X(=4×=1;所以P(N|M(= ≤x2≤⋯≤x20,经计算2=s=443.6.故X的分布列为:X01234P 则E(X)=4×=. (2)首先算出P(B(进一步结合二项分布的概2+C22=,P(X=4(=2×2=,所以X的分布列为X01234P 数为X,X=k(k=0,1,⋯,n)的概率记为P(X=k(,则n为何值时,P(X=6(的值最大?则X∼B(n,,可得P(X=6(=C6(1-n-6=C6n-6,令>1,解得n<7,可知当n≤6,可得an+1>a令<1,解得n>7,可知当n≥8,可得an+1>an;数,且σ>0,-∞<μ<+∞)。(3)ξ~N(μ,σ2(,则ξ在(μ-σ,μ+σ(,(μ-2σ,μ+2σ(,(μ-3σ,μ+3σ(上取值的概率分别为68.3%,,则P(μ-σ<Z<μ+σ)≈0.6827,P(μ-2σ<Z<μ+2σ)≈0.9545,P(μ-3σ<Z<μ=15,则X的分布列为:X012P5 2=362故P(Z≥91)=P(Z≥μ+2σ)=[1-P(μ-2σ<Z<μ+2σ)]≈0.02275, 附:若X~N(μ,σ2((σ>0),则P(μ-σ<X<μ+σ(≈0.683,P(μ-2σ<X<μ+2σ(≈0.954,P(μ-3σ<X<μ+3σ(≈0.997.所以P(X≥72(≈=0.1585.P(Y=2(=×(1-2=;(1-=;P(Y=8(=(1-×2=;P(Y=10(=×2=. 附:若X~N(μ,σ2(,则P(μ-σ<X≤μ+σ(=0.6827,P(μ-2σ<X≤μ+2σ(=0.9545,P(μ-3σ<X≤μ+3σ(=0.9973.∴P(ξ=0(=P(ξ=4(=4=,P(ξ=1(=C1-3=,P(ξ=2(=C2(1-2=,P(ξ=3(=C3(1-=,ξ01234P 38 4 41∴P(Y≥250(=P(Y≥231+19(=×(1-P(μ-σ<Y≤μ+σ((连续型随机变量X,定义其累积分布函数为F(x)=P(X≤x).已知某系统由一个电源和并联的A,B,C间工作相互独立.t,t,1>t2>0,证明:P(T>t1|T>t2)=P(T>t1-t2);t<0t≥0.【分析】(1)根据正态分布的对称性即可结合F(x)=P(X≤x)的定义求解,【详解】(1)由题设得P(38<X<42)=0.6827,P(36<X<4所以F(44)-F(38)=P(X≤44)-P(X≤38)=P(40≤X≤44)+P(38≤X≤40)PT>t1|T>t2)=======4t2-t1,P(T>t1-t2)=1-P(T≤t1-t2)=1-G(t1-t2)=4t-t,所以P(T>t1|T>t2)=P(T>t1-t2).(ⅱ)由(ⅰ)得P(T>n+1|T>n)=P(T>1)=1-P(T≤1)=1-G(1)=,所以第n+1天元件B,C正常工作的概率均为.束.∴进行3局比赛决出冠亚军的概率为P=+=故X的分布列为:X12P 23 3 X234P 9 49 49期望EX=所以结束时恰好打了6局的概率为P=P1+P2=+=.则P(X=2(=2=,P(X=3(=3+C2×=,P(X=4(=C×3×+C×2=,所以X的分布列如下:X234P 9 49 49 P(X=4)=4+4=;P(X=5)=C4×+C4×=; 随机变量X的分布列为:X4567P 8 45 P(X=1(=1-=,P(X=2(=×(1-=,P(X=3(=×=,P123X 25 相互独立.P(A(=α=,P(B(=β=,P(C(=γ=,所以P(N)=P(ABAA)+P(BAAA)+P(ACCA)+P(CACA)+P(CCAA)4+32=.P(X=2)=α2+β2,所以X的分布列为X245P2+β22+β2)所以X的期望E(X)=2(α2+β2)+8αβ(α2+β2)+20α2β2学员赢得比赛的概率与比赛一开始甲学员赢得比赛的概率相同.=P(A)P(A)+P(A)P(B)P(M)+P(B)P(A)P(M)=α2+αβP(M)+βαP(M)=α2+2αβP(M)(α+β)2-2αβα2+2αβ+β2-2αβα2+β2(α+β)2-2αβα2+2αβ+β2-2αβα2+β2. ×=,P(X3=3(=1--= X3123P 3 7所以=k(1≤k≤n-1,k∈N*(时,P(=k(=((k-1×;当=n时P(=n(=((n-1,故YYn123⋯n-1nP 3 ⋯n-2n-1+nn-1(n∈N*,n≥2).E(Yn+1(-E(Yn(=nn-1×+(n+1(n-nn-1=n>0,故E(Yn(单调递增;由上得E(Y2(=,故E(Yn(=E(Y2(+[E(Y3(-E(Y2([+[E(Y4(-E(Y3([+⋯+[E(Yn(-E(Yn-1([,∴E(Yn(=+2+3+⋯+n-1=+=3-2×n-1<3,故E(Y2(<E(Y3(<E(Y4(<E(Y5(<⋯<E(Yn(<3. 所以P=P1+P2=160+40则P(X=2(=2=,P(X=3(=C+C3=+=,P(X=4(=C×2×=,所以随机变量X的分布列为:X234P 49 3 29 金的占比.P(Y=4)=4×2=P(Y=5)=C5×2=P(Y=6)=C6×2=P(Y=7)=C7×2=Y4567P 8 4 5P(X=3)=(1-p)3;P(X=4)=C(1-p)3⋅p设乙赢得全部奖金为事件A,则P(A)=P(X=3)+P(X=4)=(1-p)3(1+3p)max=f==0.0272<0.05 =.所以随机变量X的分布列为:X2345P 49 则P(A(=,P(B(=,P(C(=,P(ξ=1(=P(AB)=P(A)P(B)=×=,=P(A)P(C)+P(A)P(B)P(C)+P(A)P(C)P(B)=×+ ξ123P 3 38 决策.比赛四局结束,所以P(X=4(=1-P(X=2(-P(X=3(=.所以X的分布列为X234P 49 3 29事件D.=.=.所以P(D(=P(AD(+P(BD(+P(CD(=P(D∣A(P(A(+P(D∣B(P(B(+P(D∣C(P(C(==P(D∣B(>P(D∣C(, 所以三人总积分X的分布列为X468P555为p3.故P(A(=p3(1-p1(+p3p1(1-p2(p3+(1-p3(p2(1-p1(p3;同理可得P(B(=(1-p1(p3+(1-p1((1-p3(p2(1-p1(+p1(1-p2(p3(1-p1(;P(C(=p2(1-p1(p3+(1-p2(p3(1-p1(=p3(1-p1(;显然P(B(-P(C(=(1-p1((1-p3(p2(1-p1(+p1(1-p2(p3(1-p1(>0,故P(B(>P(C(,P(A(-P(B(=[p3p1(1-p2(p3-p1(1-p2(p3(1-p1([+[(1-p3(p2(1-p1(p3-(1-p1((1-p3(p2(1-p1([=(p1+p3-1(p1(1-p2(p3+(p1+p3-1((1-p3(p2(1-p1(=(p1+p3-1([p1(1-p2(p3+(1-p3(p2(1-p1([,由于p1+p3>1,故P(A(-P(B(=(p1+p3-1([p1(1-p2(p3+(1-p3(p2(1-p1([>0,所以P(A(>P(B(; 概率为:P1=1-1-=;(1-1-1-=,所以丙获得冠军的概率P=+=.所以甲获得冠军的概率P=+=. iiiD=B1B2A3A4A5+B1C2A3A4A5+A1A2B3B4A5+A1A2B3C4A5+A1C2C3A4A5+A1C2B3A4A5,所以P(D(=+++++=.;(2)证明见解析,Pn=-n-1+(3)E(Y)=1-(-n+n-1n-1+i-1+ -qi((sinqi+1-sinqi(<2=n=+-n-1(3)证明见解析2=3=p2+(1-p2(=;n=pn-1+(1-pn-1(,∴pn=-pn-1+,即pn-=-pn-1-,显然qn>qn+1,则h(qn(>h(qn+1(,∴qn-sinqn>qn+1-sinqn+1,则=qn-qn+1>sinqn-sinqn+1,即(qn+1-qn((sinqn+1-sinqn(=(qn-qn+1((sinqn-sinqn+1(<, P(X=1(==;P(X=2(==;P(X=3(==.所以随机变量X的分布列为:X123P3 351则有P1=0,P2==,P3==.An+1=A⋅An+1+An⋅An+1所以Pn+1=P(A⋅An+1+An⋅An+1(=P(A⋅An+1(+P(An⋅An+1(=P(A(⋅P(An+1∣A(+P(An(⋅P(An+1∣An(=(1-Pn(⋅+Pn⋅0=(1-Pn(.即Pn+1=-Pn+.所以Pn+1-=-Pn-,且P1-=-. =A×3=.P(X=1(=3×3=,P(X=3(=A×3=,P(X=2(=1-P(X=1(-P(X=3(=,X的分布列如下:X123P 9 23 29所以,当n≥4时,Pn=Pn-1+(1-Pn-1-3××=+Pn-1-所以Pn=+Pn-1- n-1. 本结果为阳性的概率是p(0<p<1).比较E(X)与E(Y)的大小.所以P(A(=Cp(1-p)2p=3p2(1-p)2.所以P(Y=1(=(1-p)20,P(Y=21(=1-(1-p)20,所以E(Y(=(1-p)20+21[1-(1-p)20[=21-20(1-p)20.所以E(Y(-E(X(=1-20(1-p)20,令1-20(1-p)20>0,解得p>1-20.所以当p>1-20时,E(Y(>E(X(;当p=1-20时,E(Y(=E(X(;当0<p<1-20时,E(Y(<E(X(. (2)已知每个人患该疾病的概率为p(0<p<1(.(2)(i)E(X(=(1-p(n+(n+1([1-(1-p(n[;(ii)答案见解析②根据题意可得:P==;所以E(X(=(1-p(n+(n+1([1-(1-p(n[;方案二:检查的次数期望为E(X(=(1-p(5+6[1-(1-p(5[,E(X(-5=[6-5(1-p(5[-5=1-5(1-p(5,记g(p(=1-5(1-p(5,因为0<1-p<1,所以g(p(单调递当1-<p<1时,g(p(>0, 1-=.P(X=1)=(、p)4=p2;P(X=5)=1-p2,X15Pp21-p2则E(X)=5-4p2,P(Y=2)=p2;P(Y=4)=Cp(1-p)=2p(1-p);P(Y=6)=(1-p)2;Y246Pp2(1-p(2则E(Y)=2p2+4(2p-2p2)+6(1-p)2=6-4p,E(Y)-E(X)=6-4p-(5-4p2)=4p2-4p+1, *阳性的概率为p(0<p<1(.3=0.2048ξ16P5-0.85(=4.35.②当采用混合检验的方案时E(ξ(=1×(1-p(k+(k+1([1-(1-p(k[=k+1-k(1-p(k,即k+1-k(1-p(k<k,化简得0<p<1-k,所以当P满足0<p<1-k,用混合检验的方案能减少检验次数. (1)若E(ξ1(=E(ξ2(,试求p关于k的函数关系式p=f(k(;1,E(ξ2(=k+1-k(1-p(k,根=E(ξ2(解得p=1-(即可得解;(ii)求出p,根据E(ξ1(>E(ξ2(得到lnk>k,再构造函数f(x(=lnx-利用导数可求得结∴P(ξ2=1(=(1-p(k,P(ξ2=k+1(=1-(1-p(k.∴E(ξ2(=(1-p(k+(k+1([1-(1-p(k[=k+1-k(1-p(k.若E(ξ1(=E(ξ2(,则k=k+1-k(1-p(k,N∗,且k≥2).-n-11=1k-1k②假设对任意的n=k时,xk=e3-+1+(e--e-+k+1-1=0,所以(e-k+1-1((e-+k+1+1(=0.∴xk+1=e或xk+1=-e-.kn-1所以==en{为等比数列.>E(ξ2(,3-xn(n+1n+1+1=nn+1,vn+1n+1的通项公式.n+1=p,vn+1=2pnqn,wn+1=q,=+(n-1(,其中q1=-==,+n,qn=,于是wn+1=q *-.(ii)依题可知,p=1-e-(ξ1(-E(ξ2(=k(1-p(k-1=ke--1>0,ke--1>0→lnk->0,构造函数f(k(=lnk-(k≥2),由;当进行混合检验时,P(ξ2=1(=(1-p(k,P(ξ2=k+1(=1-(1-p(k则E(ξ2(=(1-p(k+(k+1([1-(1-p(k[=k+1-k(1-p(k“E(ξ1(=E(ξ2(,:k=k+1-k(1-p(k则(1-p(k=,即p=1-(-k-1②假设当n=k(k≥1,k∈N*(时,xk=e3+....+-2(k-1)-e3--1+....+=a1+a2+-2(k-1)-e3--1+....+(=e-+1-ek+1+e=0:xk+1=e或xk+1=-en-1n=e3对一切n∈N*都成立.即{xn{为等比数列.-E(ξ2(=k(1-p(k-1=ke--1>0:->ln→lnk->0令f(k(=lnk-(k≥2),则f’(k(=-=∵f(9(=ln9-<0,f(8(=ln8->0则k的最大值为8. 是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1(N*(n≥2(,都有e-E(ξ2(.结合E(ξ1(=E(ξ2(,化简即可关于k的函数关系式p=f(k(;得p=1-=1-,E(ξ1(>E(ξ2(,化简可得lnk>k,构造函数f(x(=lnx-x(x>0(,求得∴P(ξ2=1(=(1-p(k,P(ξ2=k+1(=1-(1-p(k.∴E(ξ2(=(1-p(k+(k+1([1-(1-p(k[=k+1-k(1-p(k.若E(ξ1(=E(ξ2(,则k=k+1-k(1-p(k,(1-p(k=,∴1-p=k,∴p=k.:p关于k的函数关系式为f(k(=1-(“x1=1,:下面证明对任意的正整数n,xn=e.k-1k-=,:e-:e-.x+1+(e--e-+k+1-1=0,(e-k+1-1((e-+k+1+1(=0.:xk+1=e或xk+1=-e-kn-1:xk+1=e3成立.:由①②可知,{xn{为等比数列,xn=e3.:k>k+1-k(1-p(k,得<(1-p(k=((k,:lnk>设f(x(=lnx-x(x>0(,f/(x(=,:当x≥3时,f/(x(<0,即f(x(在[3,+∞(上单调减.:ln5<.:k的最大值为4. P(Xt+1|...,Xt-2,Xt-1,Xt(=P(Xt+1|Xt(.为A(A∈N*,A<B(,赌博过程如下图的数轴所示.(1)请直接写出P(0(与P(B(的数值.计含义.-P(n-1(=P(n+1(-P(n(,即可即P(n)=P(n-1)+P(n+1),所以P(n(-P(n-1(=P(n+1(-P(n(,所以{P(n({是一个等差数列,设P(n(-P(n-1(=d,则P(n-1(-P(n-2(=d,⋯,P(1(-P(0(=d,累加得P(n(-P(0)=nd,故P(B(-P(0)=Bd,得d=-,-P(0(=nd得P(A(-P(0(=Ad,即P(A)=1-,当B=200时,P(A(=50%, 4864P(x2≥m)m2==≈10.667>6.635P(X=0)=C04=;P(X=1)=C13=P(X=2)=C22=P(X=3)=C31=P(X=4)=C40=.X的分布列为:X01234P E(X)=4×= P(X=0(=CC7=136P(X=1(=CC7=51PX012P 3 E(X(.(a+b((c+d((a+c((b+d(2=n(ad-bc)2,n(a+b((c+d((a+c((b+d(αxα则χ2=≈9.524>3.841=x0.05,P(X=0(=3=,P(X=1(=C2=,P(X=2(=C2=,P(X=3(=C3=,所以随机变量X的分布列为:X0123P ,则P(μ-σ<Y≤μ+σ(=0.6826,P(μ-2σ<Y≤μ+2σ(=0.9544)所以P(Y>90(=[1-P(80-10<Y≤80+10([
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024灯具保修服务合同
- 2025年度航道维护工程船舶维修与物料供应合同6篇
- 2025年度设备进出口试用买卖合同规范3篇
- 2025年度碎石资源整合与销售合同汇编3篇
- 2024特别担保合同定义与金融衍生品交易担保细则3篇
- 2024正规自动驾驶技术研发与测试服务合同模板3篇
- 2024版:商业物业租赁合同
- 二零二五年度特别版:二手房买卖合同中房产税费分担协议书3篇
- 2025年度电信基站租赁合同(2025版新规定详解)5篇
- 2025年人教新起点八年级化学下册阶段测试试卷
- GB/T 1335.2-2008服装号型女子
- GB 31247-2014电缆及光缆燃烧性能分级
- DCC20网络型监视与报警
- 项目实施路径课件
- 《简单教数学》读书心得课件
- 《室速的诊断及治疗》课件
- 毕业设计(论文)-基于AT89C51单片机的温度控制系统设计
- 士卓曼种植系统外科植入流程课件
- 二手新能源汽车充电安全承诺书
- 二年级下册《一起长大的玩具》导读教学-一场别样的童年之旅
- 全国水资源综合规划技术细则(水利部文件)
评论
0/150
提交评论