第06讲 有理数的减法(6种题型)(原卷版)_第1页
第06讲 有理数的减法(6种题型)(原卷版)_第2页
第06讲 有理数的减法(6种题型)(原卷版)_第3页
第06讲 有理数的减法(6种题型)(原卷版)_第4页
第06讲 有理数的减法(6种题型)(原卷版)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第06讲有理数的减法(6种题型)【知识梳理】一.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.二.有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.三、有理数加减法混合运算技巧(1)把算式中的减法转化为加法;(2)去括号时注意符号,能省掉的“”号要省掉;(3)多观察,巧妙利用运算律简便计算.【考点剖析】题型一:有理数减法法则的直接运用例1、计算:(1)(-32)-(+5);(2)(+2)-(-25).【变式1】计算:(1)7.2-(-4.8);(2)-3eq\f(1,2)-5eq\f(1,4).【变式2】(1)2-(-3);(2)0-(-3.72)-(+2.72)-(-4);(3).题型二:有理数减法的实际应用例2.上海某天的最高气温为6℃,最低气温为-1℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃【变式1】如果家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么冷冻室的温度是()A.18℃ B.﹣26℃ C.﹣22℃ D.﹣18℃题型三:应用有理数减法法则判定正负性例3.已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.【变式1】若|a|=4,|b|=2,且a+b的绝对值与相反数相等,则a﹣b的值是()A.﹣2 B.﹣6 C.﹣2或﹣6 D.2或6题型四:加减混合运算统一成加法运算例4.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(-13)-(-7)+(-21)-(+9)+(+32)题型五:有理数的加减混合运算例5.计算:(1)-9.2-(-7.4)+9eq\f(1,5)+(-6eq\f(2,5))+(-4)+|-3|;(2)-14eq\f(2,3)+11eq\f(2,15)-(-12eq\f(2,3))-14+(-11eq\f(2,15));(3)eq\f(2,3)-eq\f(1,8)-(-eq\f(1,3))+(-eq\f(3,8)).【变式1】计算,能用简便方法的用简便方法计算.(1)26-18+5-16;(2)(+7)+(-21)+(-7)+(+21)(3)(4)(5)(6)【变式2】计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17;(3)(4)(5);(6)题型六:利用有理数加减运算解决实际问题例6.下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).星期一二三四五六日水位变化0.20.81-0.350.130.28-0.36-0.01(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?【变式1】小虫从点O出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm)小虫最后是否回到出发地O?为什么?小虫离开O点最远时是多少?在爬行过程中,如果每爬行1cm奖励1粒芝麻,则小虫一共可以得到多少粒芝麻?【变式2】某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工时共耗油多少升?【过关检测】一、单选题1.(2023秋·浙江金华·七年级统考期末)在生产图纸上通常用来表示轴的加工要求,这里表示直径是,和是指直径在加到加之间的产品都属于合格产品.现加工一批轴,尺寸要求是,则下面产品合格的是(

)A. B. C. D.2.(2023秋·浙江杭州·七年级统考期末)某地一天中午12时的气温是,14时的气温升高了,到晚上22时气温又降低了,则22时的气温为(

)A. B. C. D.3.(2022秋·浙江宁波·七年级校联考期中)如果x是有理数,那么下列各式中一定比0大的是()A. B. C. D.4.(2022秋·浙江湖州·七年级统考期末)在一次数学活动课上,数学老师将共十个连续的整数依次写在十张不透明的卡片上,打乱顺序,然后让甲、乙、丙、丁四位同学任意抽取两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上.写出的结果依次是甲:;乙:;丙:1;丁:.那么的值不可能是(

)A.2 B.6 C. D.5.(2022秋·浙江·七年级校考期中)在数轴上点表示,与相距3.5个单位的点表示(

)A.5.5和 B.和1.5 C.1.5 D.6.(2022秋·浙江温州·七年级校联考期中)某天一潜水员下海,他从水面潜入水下18米,后因海水中的洋流,上升了8米,在洋流过去后,他下潜到预定的水下35米的位置,则该潜水员在洋流过程后,下潜了(

)A.9米 B.10米 C.17米 D.25米7.(2023秋·浙江金华·七年级统考期末)手机移动支付给生活带来便捷.右图是张老师2022年12月26日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),张老师当天微信收支的最终结果是(

)A.收入19.00元 B.支出10元 C.支出3.00元 D.支出22.00元8.(2023秋·浙江金华·七年级统考期末)比大1的数()A. B. C. D.9.(2022秋·浙江温州·七年级校考阶段练习)若,则括号内的数是(

)A. B. C. D.10.(2023春·浙江衢州·七年级校考阶段练习)在数1,2,3,4,5,6,7,8前添加“+”,“-”并依次计算,所得结果可能的最小非负数是0,算式可以列为:.若在数1,2,3……,n前添加“+”,“-”并依次运算,使所得结果可能的最小非负数是0,则数n不可能是(

)A.2020 B.2021 C.2023 D.2024二、填空题11.(2023秋·浙江金华·七年级统考期末)如图是小强与他妈妈的对话,小强说:买笔记本花了元……,则小强记不清怎么使用的零花钱有___________元.12.(2023秋·浙江金华·七年级校考期末)如图是一台冰箱的显示屏,则这台冰箱冷藏室与冷冻室的温差为______.13.(2022秋·浙江·七年级专题练习)若,求的相反数=__.14.(2022秋·浙江温州·七年级校联考期中)如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C表示的数为1,则A点表示的数为_________________.15.(2021秋·浙江金华·七年级统考期末)小毛同学的作业本上出现了一个错误的等式,请你直接在算式中添“括号”或“绝对值”或“负号”(不限定个数),使等式成立:___________16.(2023秋·浙江宁波·七年级统考期末)整数a、b、c满足,其中且,则的最小值是________.17.(2022秋·浙江衢州·七年级校考期中)数轴上点对应的数是,那么与相距2个单位长度的点对应的数是______.18.(2022秋·浙江宁波·七年级统考期中)在数轴上,点M,N分别表示数m,n,则点M,N之间的距离为.已知点A,B,C,D在数轴上分别表示数a,b,c,d,且,则线段BD的长度为______.三、解答题19.(2022秋·浙江·七年级专题练习)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,以1个单位表示1km,在该数轴上表示A,B,C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?20.(2022秋·浙江·七年级专题练习)已知,求的值.21.(2022秋·浙江·七年级专题练习)已知a,b、c三数在数轴上的位置如图所示,化简.22.(2022秋·浙江杭州·七年级校考期中)杭州某公交自行车服务点一共有停车桩20个.某日上午6点整,服务点共停放了14辆公交自行车.6点以后,各时间段存取自行车辆次记录如下表:(单位:辆)6:00~8:008:00~10:0010:00~12:0012:00~14:0014:00~16:00取车1271198存年68996(1)求当天6:00到16:00点,这个服务点自行车被取用的次数;(2)求16点整,该服务点还停放着几辆公交自行车.23.(2022秋·浙江宁波·七年级校联考期中)“数形结合”是重要的数学思想.如:表示3与差的绝对值,实际上也可以理解为3与在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用a,b表示,那么A,B两点之间的距离表示为.利用此结论,回答以下问题:(1)数轴上和5这两点之间的距离为.(2)若x表示一个实数,的最小值为.(3)直接写出所有符合条件的x,使得,则x的值为.24.(2022秋·浙江·七年级专题练习)计算:(1)4.7﹣(﹣8.9)﹣7.5﹣(+6)(2)3)+5+(﹣8);(3)2.7+(﹣8.5)﹣(+3.4)﹣(﹣1.2)(4)﹣0.6﹣0.08+﹣2﹣0.92+2.25.(2022秋·浙江宁波·七年级校

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论