版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新乡市高三第三次模拟测试数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,则=()A.B.C.D.2.已知复数在复平面内对应的点分别为,则()A.B.C.D.3.已知,则=()A.B.C.7D.74.某中学有高中生3000人,初中生2000人,男、女生所占的比例如下图所示.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是()A.12B.15C.20D.215.已知实数满足,则的最大值与最小值之和为()A.7B.2C.1D.66.已知等差数列中,,则()A.2018B.2018C.4036D.40367.将函数的图像向右平移个单位长度后,再将图像上各点的纵坐标伸长到原来的2倍,得到函数的图像,则()A.B.C.D.8.我国古代数学著作《九章算术》有如下问题:“今有三人共车,二车空;二人共车,九人步.问人与车各几何?”意思是:今有3人坐一辆车,有2辆车是空的;2人坐一辆车,有9个人需要步行.问人与车各多少?下图是该问题中求人数的程序框图,执行该程序框图,则输出的值为()A.31B.33C.35D.399.设函数,则不等式成立的的取值范围是()A.(1,5)B.(∞,1)∪(5,+∞)C.(5,1)D.(∞,5)∪(1,+∞)10..下图是某几何体的三视图,则此几何体的表面积为()A.B.C.D.11.如图,在正方体中,分别为的中点,点是底面内一点,且平面,则的最大值是()A.B.2C.D.12.已知双曲线的离心率,对称中心为,右焦点为,点是双曲线的一条渐近线上位于第一象限内的点,的面积为,则双曲线的方程为()A.B.C.D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知非零向量,若,则与的夹角为.14.已知函数,在区间上任取一个实数,则的概率为.15.已知等比数列的前项和为,且,则(且).16.已知抛物线的焦点为为坐标原点,点,射线分别交抛物线于异于点的点,若三点共线,则的值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,分别是内角的对边,已知.(1)求的大小;(2)若,求的面积18.2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间观看冬奥会的时间情况,收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时),又在100位女生中随机抽取20个人,已知这20位女生的数据茎叶图如图所示.将这20位女生的时间数据分成8组,分组区间分别为[0,5),[5,10),···[30,35),[35,40],在答题卡上完成频率分布直方图;以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数,已知200位男生中累计观看时间小于20的男生有50人.请完成答题卡中的列联表,并判断是否有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”0.100.050.0100.0052.7063.8416.6357.879附:.19.在如图所示的几何体中,平面.(1)证明:平面;(2)过点作一平行于平面的截面,画出该截面,说明理由,并求夹在该截面与平面之间的几何体的体积.20.已知椭圆的焦距为,且,圆与轴交于点为椭圆上的动点,面积最大值为.(1)求圆与椭圆的方程;(2)圆的切线交椭圆于点,求的取值范围.21.已知函数,曲线在点处的切线方程为.(1)求的值;(2)证明:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修44:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为.求曲线的直角坐标方程,并指出该曲线是什么曲线;若直线与曲线的交点分别为,求.23.选修45:不等式选讲已知函数.解关于的不等式;记函数的最大值为,若,求的最小值.
新乡市高三第三次模拟测试数学(文科)一、选择题15:610:11、12:二、填空题13.14.15.16.2三、解答题17.解:(1)因为.所以,即.又,所以.(2)因为,所以.由,可得.又.所以.18.解:(1)由题意知样本容量为20,频率分布表如下:分组频数频率[0,5)10.01[5,10)10.01[10,15)40.04[15,20)20.02[20,25)40.04[25,30)30.03[30,35)30.03[35,40)20.02合计201频率分布直方图为:(2)因为(1)中的[30,40]的频率为,所以1名女生观看冬奥会时间不少于30小时的概率为.(3)因为(1)中[0,20)的频率为,故可估计100位女生中累计观看时间小于20小时的人数是.所以累计观看时间与性别列联表如下:男生女生总计累计观看时间小于20小时504090累计观看时间不小于20小时15060210总计200100300结合列联表可算得.所以,有的把握认为“该校学生观看冬奥会时间与性别有关”.19.(1)证明:在中,.所以,所以为直角三角形,.又因为平面,所以.而,所以平面.(2)解:取的中点,的中点,连接,平面即为所求.理由如下:因为,所以四边形为平行四边形,所以,从而平面,同理可证平面.因为,所以平面平面.由(1)可知,平面,平面.因为,,所以,所求几何体的体积.20.解:(1)因为,所以.①因为,所以点为椭圆的焦点,所以.设,则,所以.当时,,②由①,②解得,所以,.所以圆的方程为,椭圆的方程为.(2)①当直线的斜率不存在时,不妨取直线的方程为,解得.②当直线的斜率存在时,设直线的方程为.因为直线与圆相切,所以,即,联立,消去可得,.==.令,则,所以=,所以=,所以.综上,的取值范围是.(1)解:由已知得因为,所以.(2)证明:由(1)知,所以.设,要证,即要证在(0,+∞)恒成立.因为,所以在上为增函数,在上为减函数,所以.①又,所以在上为减函数,在上为增函数,所以.②由于不等于①和②不能同时取等号,故.所以成立.22.解:(1)因为所以,即,所以曲线表示焦点坐标为(0,2),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 托班入园心理课程设计
- 幼儿园春晚主题课程设计
- 智慧职教课程设计在哪里
- 投资实战课程设计案例
- 服务器网络配置课程设计
- 微课制作课程设计
- 智能备考技巧课程设计
- 影片剪辑 教学课程设计
- 电力市场分析与投资策略
- 智能经济课程设计思路
- 《仓库盘点培训》课件
- 2024年广东省深圳市福田区中考一模英语试题(解析版)
- 2024版电动汽车充电站建设合同3篇
- 过敏性休克课件护理
- 2024年度美团骑手劳动合同样本3篇
- 平安夜圣诞节介绍活动方案6
- 2021年军队文职统一考试《专业科目》管理学类-管理学试题(含解析)
- 2024年安全员之A证考试题库附参考答案(黄金题型)
- 学员培训合同范本
- 铸牢中华民族共同体意识-形考任务3-国开(NMG)-参考资料
- 平面构成(普通高等院校艺术设计专业)全套教学课件
评论
0/150
提交评论