




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
Author:WilliamCopeland,wcopeland1981@Advisor:TimProffitt
Accepted:May28,2024
Abstract
Theincreasingsophisticationofmalwareposessignificantchallengesfortraditional
memoryanalysistechniquesindigitalforensics.Thisresearchexploresthepotentialof
leveragingGenerativeArtificialIntelligence(AI)models,specificallyOpenAI’sGPT-4
TurboandAnthropic’sClaude3Opus,toenhancemalwaredetectioninmemory.By
combiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,thisstudyaimstodevelopaninnovativeapproachforaccuratelyidentifyingandclassifyingmaliciousactivitiesinmemorydumps.Theresearch
methodologyinvolvescollectingadiversesetofmemorydumpsamples,preprocessingthedatausingVolatilityplugins,andevaluatingtheperformanceoftheAImodelsusingquantitativemetrics.
ThefindingshighlightthepotentialofGenerativeAImodelsineffectivelyidentifying
malware,whilealsorevealinglimitationsandareasforimprovement.Theimplications
suggestthatGenerativeAImodelscanserveasvaluablecomplementarytoolsalongsidetraditionalmalwaredetectionmethods,andfutureresearchrecommendationsinclude
expandingdatasets,developingdomain-specificmodels,andintegratingGenerativeAI
capabilitiesintoexistingmemoryforensicsworkflows.ThisstudylaysthefoundationforfurtherexplorationandadvancementofGenerativeAImodelsin-memoryanalysisand
malwaredetection.
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
2
1.Introduction
Indigitalforensics,memoryanalysisiscrucialinuncoveringvaluableevidence
andinsightsfromcomputersystems.Memorydumps,snapshotsofacomputer’svolatilememoryataspecifictime,containawealthofinformationaboutrunningprocesses,
networkconnections,andsystemactivities.However,malware’sincreasing
sophisticationandcomplexityposesignificantchallengesfortraditionalmemoryanalysistechniques.Researchhasshownthatmalwarehasreachedalevelofsophistication,
makingdetectionandanalysisextremelydifficultforforensicinvestigatorsandincidentrespondersduetomalwareauthorsemployingvariousobfuscationandevasion
techniques(Kolbitsch,etal.,2009).
Researchersandpractitionershaveturnedtoadvancedtoolsandframeworksto
addressthesechallenges,suchastheVolatilityFramework.TheVolatilityFrameworkisawidelyusedopen-sourcememoryforensicstoolthatprovidesacollectionofpluginsforextractingandanalyzingdatafrommemorysamplesfromdifferentoperationsystems
(TheVolatilityFramework,2024).However,theeffectivenessofmemoryanalysisheavilyreliesontheabilitytoaccuratelyidentifyandclassifymaliciouspatternsandbehaviorsintheextracteddata.
TheGenerativeArtificialIntelligence(AI)fieldhaswitnessedsignificant
advancementsinrecentyears,openingnewdataanalysisandpatternrecognition
possibilities.ModernGenerativeAImodelsincludeOpenAI’sGPT-4Turboand
Anthropic’sClaude3Opus.GPT-4Turboisalargemultimodalmodelwithalarger
contextwindowof128,000tokens,whichacceptstextorimagesasinputstoproducea
textoutput.Withbroadergeneralknowledgeandadvancedreasoningcapabilities,the
modelcanmoreaccuratelysolvecomplexproblems(Models,2024).Claude3Opusis
Anthropic’smostpowerfulmultimodalmodel,whichdeliversadvancedperformanceanddemonstratesahuman-likeunderstandingoftext(ModelsOverview,2024).Withan
extendedcontextwindowof200,000tokens,themodelcanprocesslargeamountsofdatatocompletehighlycomplextasks(LongContextWindowTips,2024).Toutilizethese
GenerativeAIcapabilities,apaidsubscriptionisrequiredtointeractwiththemodelviawebinterfaceoraccesstothemodelviaApplicationProgrammingInterface(API).
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
3
Overall,bothmodelsarepromisingcandidatesforapplicationinvariousdomains,includingcybersecurityanddigitalforensics.
ThisresearchexploresthepotentialofleveragingGenerativeAImodelsfor
enhancedmalwaredetectioninmemory.BycombiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,aninnovative
approachwillbedevelopedthatcanaccuratelyidentifyandclassifymaliciousactivitiesinmemorydumps,ultimatelystrengtheningthecapabilitiesofforensicinvestigatorsincombatingsophisticatedcyberthreats.
2.ResearchMethod
2.1.QuantitativeAnalysisMethod
Thisresearchwillutilizetheaccuracyanderrorratesmethodtoevaluatethe
performanceoftheGenerativeAImodels,specificallyOpenAI’sGPT-4Turboand
Anthropic’sClaude3Opus,inidentifyingmalwarewithmemorydumps.This
quantitativeanalysismethodprovidesastraightforwardapproachtomeasuringthe
overallproportionofsamplescorrectlyclassifiedbythemodel,whichaidsinidentifyingareasofimprovementforthemodel.Keymetricsarecalculatedbycomparingthe
models’predictionswiththegroundtruthlabels,suchasaccuracyanderrorrates,whichconsistoftheFalsePositiveRate(FPR)andFalseNegativeRate(FNR),toassessthe
effectivenessofmalwaredetection.Accuracy,asseeninFigure1,isthemeasurementoftheoverallcorrectnessofthemodelsinidentifyingmaliciousandbenignmemorydumps.
Accuracy=(TruePositive(TP)+TrueNegative(TN))/(TotalInstances)
Figure1:AccuracyCalculation
FPR,asseeninFigure2,calculatestheproportionofbenignsamplesincorrectlyclassifiedasmalicious.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
4
FPR=FalsePositive(FP)/(FalsePositive(FP)+TrueNegative(TN))
Figure2:FalsePositiveRateCalculation
FNR,asseeninFigure3,calculatestheproportionofmalicioussamplesincorrectlyclassifiedasbenign.
FNR=FalseNegative(FN)/(FalseNegative(FN)+TruePositive(TP))
Figure3:FalseNegativeRateCalculation
Thesemetricsprovideameanstoevaluatethemodels’performanceandhelpidentifytheirstrengthsandweaknessesinthecontextofmemoryforensics.
2.2.DataCollection
Thedatacollectionphaseinvolvedacquiringdiversememorydumpsamplesandcategorizingthemasmalicious,benign,orunknown.Toensurethereliabilityand
representativenessofthedataset,memorydumpsfromvarioussources,suchaspubliclyavailabledatasets,malwarerepositories,andreal-worldincidents,willbecollected.
TheVolatilityFrameworkwillextractvaluableinformationfromasystemduringmemoryacquisition,suchasprocesses,loadmodules,handles,andnetworkconnectionsfromeachmemorydumpsample(TheVolatilityFramework,2024).TheVolatility
plugin’soutputcreatesarichsetofartifactsanddatapointstoserveasinputforthe
GenerativeAImodels.ThreeartifactcategoriesofVolatilitypluginswereutilizedduringthisresearch:processes,networkconnections,andsuspiciousactivity.Figure4outlinesthepluginsforeachcategory.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
5
VolatilityFrameworkPlugins
Processes
NetworkConnections
SuspiciousActivity
pslistpsscan
netscan
malfindapihooks
cmdline
timeliner
dlllist
ldrmodules
handles
Figure4:VolatilityPlugins
Thesepluginswerechosenbasedontheirrelevancetomemoryanalysisandtheirabilitytoprovidevaluableinsightsintopotentialmaliciousactivities.
2.3.DataProcessing
Severalpreprocessingstepsmustbeperformedtopreparethecollecteddatafromthememorydump.First,theoutputfromtheVolatilitypluginsmustbecleaned,
aggregated,andconvertedintoastructuredformat,specificallyJavaScriptObjectNotation(JSON).Thisstandardizedformatwillfacilitatethedataingestionintothemodelsandensureconsistencyacrossdifferentmemorydumpsamples.
Next,alabelisappendedtothepreprocesseddatawiththesamplename,
operatingsystem,andthegroundtruthinformationforeachmemorydump.Thegroundtruthlabelswillclassifyeachsampleasmaliciousorbenign,providingareliable
referenceforevaluatingtheperformanceofthemodels.Figure5isthegroundtruthtableutilizedforthesamples.
Malicious
Benign
Sample-1
True
False
Sample-2
True
False
Sample-3
False
True
Sample-4
True
False
Sample-5
True
False
Sample-6
False
True
Figure5:GroundTruthTable
Furthermore,developinganappropriatesystempromptiscrucialforeffectivelyutilizingthemodels.Thepromptisdesignedtoelicitrelevantinformationfromthe
modelsbasedonthepreprocesseddata,enablingthemodeltomakeapredictionand
providemeaningfulinsights.Figure6isthesystempromptutilizedduringtheresearch.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
6
Youareanincidentresponderanalyzingamemorydumpfromapotentially
compromisedWindowssystemusingtheVolatilityframework.YouwillbeprovidedwiththeconsolidatedoutputoftheVolatilitypluginsrunagainstthememorydump.
YourtaskistocarefullyanalyzetheprovidedVolatilitypluginoutputtolookforevidencethatisofmalwareonthesystem.
Usethestep-by-stepinstructionsbelowtobuildaresponsetotheuser’sinput.
Step1-Theuserwillprovideyouwithdata.Providethefollowinginformation:<name>Providethesamplefilename.
<operatingsystem>Providetheoperatingsystemidentifiedinthefile.<key>Providethekeytothelabelkeypairinthedata.
<answer>InformtheuserifthedumpisMalicious,Benign,orUnknown.Onlyprovideoneanswer.
SampleName:<name>
OperatingSystem:<operatingsystem>
TruthLabel:<key>Prediction:<answer>
Step2-WriteoutyouranalysisandreasoningbasedontheVolatilityoutput.CitespecificlinesfromtheVolatilityoutputtojustifyyourreasoningwhereapplicable.
Figure6:SystemPrompt
2.4.ModelEvaluation
Evaluatingthemodelsrequiresasystempromptandingestingthepreprocesseddataintothemodelstoassesstheirperformanceusingquantitativemetrics.The
OpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelswereemployedforthispurpose,leveragingtheiradvanceddataanalysiscapabilitiestoanalyzethememory
dumpdata.
ThepreprocesseddatawasingestedintoOpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelsusingtheirrespectivedeveloperplatforms,OpenAI’sPlayground(Playground,2024)andAnthropic’sWorkbench(Workbench,2024).Theseweb-basedinterfacesprovideauser-friendlyenvironmentfordeveloperstosubmitdataandinteractwiththemodelsthroughtheirAPIs.Theplatformsallowforconfiguringmodel
parameters,suchastemperatureandtokenlimit,andprovideameanstoinputthesystempromptanddata.Uponsubmission,themodelsprocesstheinputandgeneratearesponsecontainingtheiranalysisandclassificationofthememorydumpsamples.Themodel’s
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
7
classificationsarethencomparedagainstthegroundtruthlabelsassociatedwitheachmemorydumpsampletoevaluatethemodels’performanceandcalculatetheaccuracy,FPR,andFNRmetrics.Bycomparingtheevaluationmetricsbetweenthemodels,the
researchwillshowinsightsthatcanbegleanedintotherelativestrengthsandweaknesses.
Insummary,theresearchmethodoutlinedinthissectionprovidesanapproachtoevaluatingtheeffectivenessofeachmodel.ItaimstocontributetotheadvancementofintegratingGenerativeAIintoforensicstechniquestocombatevolvingmalwarethreats.
3.FindingsandDiscussion
3.1.AnalysisofQuantitativeResults
Beforedivingintothequantitativeanalysisofthemodel’sperformance,itis
necessarytounderstandthenatureofthedatasetfedintothemodels.Theinputdatasetconsistedofextractedartifacts(runningprocesses,networkconnections,andsuspiciousmemoryregionswereextracted)frommemorysamples.Thesesamplesencompassedavarietyofmalwarefamilies,suchasransomware,trojans,androotkits,aswellasbenignmemorydumpsfromcleansystems.Includingmaliciousandbenignsampleswas
essentialtoaccuratelyassessthemodels’abilitytodistinguishbetweenthetwoclasses.
Itisimportanttonotethatthedatasetusedinthisanalysiswaslimitedtosix
samplesbutcontainedverycomplexdata.Thedatasetrepresentedvariousscenarios,
encompassingoperatingsystems,systemconfigurations,andmalwarebehaviors.The
complexityofthedatasetposedasignificantchallengeforthemodels,astheyneededtoidentifysubtlepatternsandindicatorsofcompromiseamidstavastamountofmemory
data.Byfeedingthemodelswithsuchacomprehensiveandchallengingdataset,theaimwastoassesstheirabilitytogeneralizeandaccuratelydetectmalwareinmemorydumps.
Thequantitativeanalysisofthemodels’performanceyieldedmeaningfulinsights.Thetruthtableandmodelpredictionsforeachsamplewereusedtocalculatethe
accuracy,FPR,andFNRforboththeGPT-4TurboandClaude3Opusmodels,refertoAppendixA–F.Figure7,AccuracyandErrorRates,consolidatesandprovidesthe
metricsforbothmodels.
wcopeland1981@
Accuracy
1
FalsePositiveRate
0
FalseNegativeRate
0
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
8
OpenAIGPT-4Turbo
AnthropicClaud3Opus
TruePositives(TP)
4
TruePositives(TP)
6
TrueNegatives(TN)
0
TrueNegatives(TN)
0
FalsePositives(FP)
2
FalsePositives(FP)
0
FalseNegatives(FN)
0
FalseNegatives(FN)
0
TotalSamples
6
TotalSamples
6
Accuracy
0.6666667
FalsePositiveRate
1
FalseNegativeRate
0
Figure7:AccuracyandErrorRates
Theaccuracy,FPR,andFNRvaluesrangefrom0to1,providingastandardizedmetricforevaluatingthemodels’performance.Accuracyrepresentstheoverall
correctnessofthemodelsinclassifyingmemorydumpsasmaliciousorbenign.Itis
calculatedbydividingthesumoftruepositives(correctlyidentifiedmalicioussamples)andtruenegatives(correctlyidentifiedbenignsamples)bythetotalnumberofsamples.Anaccuracycloserto1isanindicationofbetteroverallperformance.
Inthisanalysis,theGPT-4Turbomodelachievedanaccuracyof0.6666667,
whichmeansitcorrectlyclassifiedapproximately66.67%ofthesamples.Ontheotherhand,theClaude3Opusmodelachievedanaccuracyof1,indicatingthatitcorrectlyclassifiedallthesamplesinthedataset.
TheFalsePositiveRate(FPR)representstheproportionofbenignsamples
incorrectlyclassifiedasmalicious.Itiscalculatedbydividingthenumberoffalse
positives(benignsamplesincorrectlyidentifiedasmalicious)bythesumoffalse
positivesandtruenegatives(correctlyidentifiedbenignsamples).AnFPRcloserto0isdesirable,asitindicatesalowerrateoffalsealarms.TheGPT-4Turbomodel
demonstratedanFPRof1,incorrectlyclassifyingallbenignsamplesasmalicious.ThishighFPRsuggeststhattheGPT-4Turbomodeltendstogeneratefalsepositives,
potentiallyleadingtounnecessaryinvestigationeffortsandresourceallocation.In
contrast,theClaude3OpusmodelachievedanFPRof0,indicatingthatitdidnot
misclassifyanybenignsamplesasmalicious,whichisidealforreducingfalsealarms.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
9
TheFalseNegativeRate(FNR)representstheproportionofmalicioussamples
incorrectlyclassifiedasbenign.Itiscalculatedbydividingthenumberoffalsenegatives(malicioussamplesincorrectlyidentifiedasbenign)bythesumoffalsenegativesand
truepositives(correctlyidentifiedmalicioussamples).AnFNRcloserto0ispreferred,asitindicatesalowerrateofmissedmalware.TheGPT-4TurboandClaude3Opus
modelsdemonstratedanFNRof0,indicatingthattheycorrectlyidentifiedallthe
malicioussamplesinthedataset.ThisperfectFNRsuggeststhatbothmodelscandetectmalwarewithoutmissinganymaliciousinstances.
However,itiscrucialtoconsiderthelimitationsofthedatasetusedinthis
analysis.Thedatasetconsistsofalimitednumberofsamples,anditisvitaltoevaluatethemodels’performanceonamoreextensiveanddiversedatasettoassesstheir
generalizationcapability.Additionally,themodel’sabilitytodetectunseenmalwaresamplesinreal-worldscenariosshouldbevalidatedtoensuretheireffectivenessincategorizingsophisticatedandevolvingmalware.
RefertoAppendixA-FtoreviewthecompleteresponsefromGPT-4TurboandClaude3Opusmodelsforthesampledatasubmitted.
3.2.Limitations
Despitethepromisingresults,itisvitaltoacknowledgethelimitationsofthe
currentresearch.Onelimitationisthesizeanddiversityofthedatasetusedfor
evaluation.Whileeffortsweremadetocollectarepresentativesampleofmemorydumps,thedatasetdoesnotencompassallpossiblevariationsandemergingmalwaretechniques.Futureresearchshouldexpandthedatasetandincludeamorecomprehensiverangeof
malwarefamiliesandsystemconfigurations.
Anotherlimitationwastheconstraintposedbythecontextwindowsizeofthe
GPT-4TurboandClaude3Opusmodels.TheClaude3Opusmodelhasasignificantly
largercontextwindow,capableofprocessingupto72,000moretokensthantheGPT-4Turbomodel.ThisdifferenceintokencapacitypresentedchallengeswhensubmittingthedatageneratedbytheVolatilityplugins.Duetotheextensiveamountofdataproduced,
thetokenlimitofthemodelwasexceeded.Aniterativeprocesswasemployedto
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
10
reconfigurethepluginselectiontoensurethatthedatageneratedbytheVolatilitypluginsdidnotexceedthetokenlimitofthemodels.Theobjectivewastofindanoptimal
balancebetweencollectingacomprehensivesetofartifactsandreducingtheoveralldatasize.Theprocessinvolvedexchangingpluginsmultipletimesandevaluatingtheimpactonthetokencount.Aftereachreconfiguration,theresultingdatawassubmittedto
OpenAI’sTokenizer(Tokenizer,2024)andHuggingFacesTokenizertool(TokenizerArena,2024),whichcalculatedthetokensizeofthedata.Thisiterativeprocesswas
repeateduntilthedataforeachmemorydumpsamplewaswithinthe128,000tokens,
ensuringthedatadidnotexceedthecontextwindowforbothmodels.Asaresultofthisoptimization,theinitialsetoftenpluginshadtobenarroweddowntoasubsetofsix
plugins.Figure8presentstherefinedlistofpluginsusedinthefinalanalysis.
VolatilityFrameworkPlugins
Processes
NetworkConnections
SuspiciousActivity
pslistpsscan
netscan
malfindapihooks
cmdline
Figure8:VolatilityPlugins
Thisreductionallowedforthesuccessfulsubmissionofthedatatobothmodelswithoutexceedingtheirtokencapacities.However,italsomeantthatsomepotentiallyvaluableinformationfromtheexcludedpluginscouldnotbeincorporatedintotheanalysis.Thislimitationhighlightsthetrade-offswhenworkingwithAImodelswithdifferentcontextwindowsizes.
Moreover,themodelsusedinthisresearch,GPT-4TurboandClaude3Opus,haveinherentlimitations.Thesemodelsarebasedonnaturallanguageprocessingandmaynotbedesignedexplicitlyformalwaredetectioninmemorydumps.Further,fine-tuningandadaptingthemodelstothespecificdomainofmemoryforensicscould
enhancetheirperformance.
3.3.AreasofImprovement
Severalareasforimprovementcanbeidentifiedbasedonthefindingsand
limitationsdiscussed.First,thepreprocessingtechniquesappliedtothememorydump
datacouldbefurtherrefined.Exploringtechniquestoefficientlycompressorsummarize
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
11
thedatageneratedbytheVolatilitypluginswouldenabletheinclusionofmorecomprehensiveinformationwithinthetokenlimitsofthemodels.
Secondly,thepromptsusedtointeractwiththemodelscanbeoptimized.
Developingmoretargetedandcontext-specificpromptscouldimprovethemodels’
abilitytoidentifymaliciouspatternsaccurately.PromptdevelopmentiscrucialingettingthemostoutofGenerativeAImodels.Researcherscanguidethemodelsbycarefully
designingpromptstoproducemoreaccurateandrelevantresponsesformalwaredetectionandothertasks.
Whenoptimizingprompts,severalkeyfactorsshouldbeconsidered.Thepromptshouldhaveaclearobjective,explicitlystatingwhatthemodelshouldachieve(PromptEngineering,2024).Providingspecificdetailsorparametersrelevanttothetaskcan
furtherguidethemodel’sresponse.Usingconciseandunambiguouslanguagereduces
confusionandimprovesthemodel’sunderstandingofthetask.Includingrelevant
context,framingthepromptasaquestionordirective,andspecifyingtheroleorpersonathemodelshouldadoptcanalsohelprefinetheresponsestyleanddepthaccordingtotheassumedexpertise(PromptEngineering,2024).Breakingcomplextasksintoclear,
manageablestepsandprovidingexamplescanleadtomorestructuredandcoherentresponses(PromptEngineering,2024).
Promptdevelopmentisaniterativeprocessthatrequiresexperimentationand
refinement.Researchersshouldcontinuouslyevaluatethemodel’sresponsesandadjustthepromptsaccordingly.Well-craftedpromptscansignificantlyenhancethemodels’
abilitytoidentifymaliciouspatternsaccuratelyinthecontextofmalwaredetection.Bycarefullydesigningpromptsthatalignwitheachtask’sspecificobjectivesand
requirements,researchersandpractitionerscanharnessthepowerofthesemodelstosolvecomplexproblemsandgeneratevaluableinsights.
Additionally,incorporatingdomain-specificknowledgeandrulesintothemodelscouldenhancetheirperformance.Byintegratingexpertknowledgeandheuristicsfrom
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
12
memoryforensics,themodelscanbeguidedtowardamoreaccurateandcontext-awareprediction.
Furthermore,exploringensembletechniquesthatcombineGenerativeAImodelsorintegratingthemwithtraditionalmalwaredetectionmethodscouldprovideamore
robustapproachtoidentifyingmalwareinmemorydumps.
3.4.ReflectionontheResearchObjective
Theresearchobjectivessetoutatthebeginninghavebeensuccessfullyaddressed.Thequantitativeanalysismethod,utilizingaccuracyanderrorrates,providedameanstoevaluateGenerativeAImodels’performanceindetectingmalwareinmemorydumps.
Thedatacollectionandpreprocessingsteps,leveragingtheVolatilityFrameworkandselectedplugins,enabledtheextractionofartifactsfrommemorydumps.The
preprocesseddatawasinputfortheGenerativeAImodels,facilitatingtheirevaluationandanalysis.
Thefindingsanddiscussionsectionprovidedin-depthinsightsintothemodels’
performance,limitations,andareasforimprovement.Theimplicationsofthefindingsforenhancingmalwaredetectioninmemorywereexplored,highlightingthepotential
benefitsandchallengesassociatedwithintegratingGenerativeAImodelsinmemoryforensics.
4.ImplicationsandRecommendations
4.1.ImplicationsoftheFindings
Thefindingsofthisresearchhavesignificantimplicationsforimprovingmalwaredetectioninmemory.ThegenerativeAImodels’highaccuracyandrelativelylowerrorratesdemonstratetheirpotentialasavaluabletoolformemoryforensicspractitioners.
ByleveragingthepowerofGenerativeAI,investigatorscanautomateand
acceleratetheprocessofanalyzingmemorydumps,enablingthemtoidentifypotential
malwareinfectionsquickly.TheexperimentalresultsinthisstudyshowthattheClaude3Opusmodelachievedaperfectaccuracyscoreof1andanFNRof0,indicatingitsabilitytocorrectlyidentifyallmalicioussampleswithoutmissingany(Figure7).Thislevelof
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
13
accuracycanconsiderablyreducethetimeandenergyrequiredformanualanalysis,
allowingformoreefficientandeffectiveincidentresponse.ResearchhasshownthatAI-basedtechnologiesleveragedindigitalforensicinvestigationscandrasticallysavethe
timeneededtoevaluateanduncoverpotentialsecuritybreaches(Fakiha,2023).
Moreover,theabilityofgenerativeAImodelstolearnandadapttonewmalwarepatternsandtechniquesopenspossibilitiesforproactivethreatdetection.Asnewmalware
variantsemerge,thesemodelscanbecontinuouslytrainedandupdatedtodetectevolving
threats,enhancingorganizations’overallsecurityposture.Researchsuggeststhat
organizationsmustemploycontinuouslearningandadaptivemodelstokeeppacewith
theever-evolvinglandscapeofmalwarethreats(Sindiramutty,2023).However,itis
crucialtoconsiderthelimitationsandpotentialrisksassociatedwithrelyingsolelyon
GenerativeAIformalwaredetection.Falsepositivesandnegativescanhavesignificanteffects,suchaswastedresourcesonbenignsamplesoroverlookingthreats.Inthisstudy,theGPT-4Turbomodel’shighFPRof1.0(Figure7)highlightstheneedforcautionandfurtherrefinement.Therefore,itisrecommendedthatGenerativeAImodelsbeusedasacomplementarytooltoworkalongsidetraditionalmalwaredetectionmethodsandhumananalysis.
4.2.RecommendationsForFutureResearch
Basedontheoutcomesofthisstudy,severalrecommendationsforfutureresearchcanbemadetoenhancetheeffectivenessandapplicabilityofGenerativeAImodelsin
memoryforensics.TheserecommendationsfocusonaddressingthelimitationsidentifiedinthecurrentstudyandexploringnewavenuestofurtheradvancethefieldofAI-assistedmemoryforensics.
4.2.1.ExpandedDataset
Oneofthecriticallimitationsofthecurrentstudyisthelimitedsizeofthedataset,whichconsistedofonlysixmemorydumpsamples.Whilethisdatasetallowedforan
initialevaluationoftheGenerativeAImodels’performance,futureresearchshouldaimtocollectamoreextensiveanddiversedatasettoenhancethemodel’sgeneralization
abilityandrobustness.Expandingthedatasettoincludehundredsorthousandsofmemorydumpsamplesfromvarioussourceswouldprovideamorecomprehensive
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
14
representationofreal-worldscenar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 闲置危房协议书模板
- 投资个体诊所协议书
- 少儿培训协议书范本
- 施工损坏免责协议书
- 砖厂对外发包协议书
- 开除合伙伙伴协议书
- 取消房屋转让协议书
- 煤矿设备供应协议书
- 老公签订挣钱协议书
- 系统付费维护协议书
- 【万向传动轴设计11000字(论文)】
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 营销现场作业安全工作规程
- 青少年科普主题活动方案
- 《中华民族大团结》(初中)-第11课-团结奋斗-繁荣发展-教案
- (正式版)QBT 1950-2024 家具表面漆膜耐盐浴测定法
- 2021年10月自考00567马列文论选读试题及答案含解析
- (2024年)面神经炎课件完整版
- 2024年度糖尿病2024年指南版课件
- 企业的横向整合战略
- 小学四年级体育《快速跑》教案
评论
0/150
提交评论