版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
Author:WilliamCopeland,wcopeland1981@Advisor:TimProffitt
Accepted:May28,2024
Abstract
Theincreasingsophisticationofmalwareposessignificantchallengesfortraditional
memoryanalysistechniquesindigitalforensics.Thisresearchexploresthepotentialof
leveragingGenerativeArtificialIntelligence(AI)models,specificallyOpenAI’sGPT-4
TurboandAnthropic’sClaude3Opus,toenhancemalwaredetectioninmemory.By
combiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,thisstudyaimstodevelopaninnovativeapproachforaccuratelyidentifyingandclassifyingmaliciousactivitiesinmemorydumps.Theresearch
methodologyinvolvescollectingadiversesetofmemorydumpsamples,preprocessingthedatausingVolatilityplugins,andevaluatingtheperformanceoftheAImodelsusingquantitativemetrics.
ThefindingshighlightthepotentialofGenerativeAImodelsineffectivelyidentifying
malware,whilealsorevealinglimitationsandareasforimprovement.Theimplications
suggestthatGenerativeAImodelscanserveasvaluablecomplementarytoolsalongsidetraditionalmalwaredetectionmethods,andfutureresearchrecommendationsinclude
expandingdatasets,developingdomain-specificmodels,andintegratingGenerativeAI
capabilitiesintoexistingmemoryforensicsworkflows.ThisstudylaysthefoundationforfurtherexplorationandadvancementofGenerativeAImodelsin-memoryanalysisand
malwaredetection.
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
2
1.Introduction
Indigitalforensics,memoryanalysisiscrucialinuncoveringvaluableevidence
andinsightsfromcomputersystems.Memorydumps,snapshotsofacomputer’svolatilememoryataspecifictime,containawealthofinformationaboutrunningprocesses,
networkconnections,andsystemactivities.However,malware’sincreasing
sophisticationandcomplexityposesignificantchallengesfortraditionalmemoryanalysistechniques.Researchhasshownthatmalwarehasreachedalevelofsophistication,
makingdetectionandanalysisextremelydifficultforforensicinvestigatorsandincidentrespondersduetomalwareauthorsemployingvariousobfuscationandevasion
techniques(Kolbitsch,etal.,2009).
Researchersandpractitionershaveturnedtoadvancedtoolsandframeworksto
addressthesechallenges,suchastheVolatilityFramework.TheVolatilityFrameworkisawidelyusedopen-sourcememoryforensicstoolthatprovidesacollectionofpluginsforextractingandanalyzingdatafrommemorysamplesfromdifferentoperationsystems
(TheVolatilityFramework,2024).However,theeffectivenessofmemoryanalysisheavilyreliesontheabilitytoaccuratelyidentifyandclassifymaliciouspatternsandbehaviorsintheextracteddata.
TheGenerativeArtificialIntelligence(AI)fieldhaswitnessedsignificant
advancementsinrecentyears,openingnewdataanalysisandpatternrecognition
possibilities.ModernGenerativeAImodelsincludeOpenAI’sGPT-4Turboand
Anthropic’sClaude3Opus.GPT-4Turboisalargemultimodalmodelwithalarger
contextwindowof128,000tokens,whichacceptstextorimagesasinputstoproducea
textoutput.Withbroadergeneralknowledgeandadvancedreasoningcapabilities,the
modelcanmoreaccuratelysolvecomplexproblems(Models,2024).Claude3Opusis
Anthropic’smostpowerfulmultimodalmodel,whichdeliversadvancedperformanceanddemonstratesahuman-likeunderstandingoftext(ModelsOverview,2024).Withan
extendedcontextwindowof200,000tokens,themodelcanprocesslargeamountsofdatatocompletehighlycomplextasks(LongContextWindowTips,2024).Toutilizethese
GenerativeAIcapabilities,apaidsubscriptionisrequiredtointeractwiththemodelviawebinterfaceoraccesstothemodelviaApplicationProgrammingInterface(API).
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
3
Overall,bothmodelsarepromisingcandidatesforapplicationinvariousdomains,includingcybersecurityanddigitalforensics.
ThisresearchexploresthepotentialofleveragingGenerativeAImodelsfor
enhancedmalwaredetectioninmemory.BycombiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,aninnovative
approachwillbedevelopedthatcanaccuratelyidentifyandclassifymaliciousactivitiesinmemorydumps,ultimatelystrengtheningthecapabilitiesofforensicinvestigatorsincombatingsophisticatedcyberthreats.
2.ResearchMethod
2.1.QuantitativeAnalysisMethod
Thisresearchwillutilizetheaccuracyanderrorratesmethodtoevaluatethe
performanceoftheGenerativeAImodels,specificallyOpenAI’sGPT-4Turboand
Anthropic’sClaude3Opus,inidentifyingmalwarewithmemorydumps.This
quantitativeanalysismethodprovidesastraightforwardapproachtomeasuringthe
overallproportionofsamplescorrectlyclassifiedbythemodel,whichaidsinidentifyingareasofimprovementforthemodel.Keymetricsarecalculatedbycomparingthe
models’predictionswiththegroundtruthlabels,suchasaccuracyanderrorrates,whichconsistoftheFalsePositiveRate(FPR)andFalseNegativeRate(FNR),toassessthe
effectivenessofmalwaredetection.Accuracy,asseeninFigure1,isthemeasurementoftheoverallcorrectnessofthemodelsinidentifyingmaliciousandbenignmemorydumps.
Accuracy=(TruePositive(TP)+TrueNegative(TN))/(TotalInstances)
Figure1:AccuracyCalculation
FPR,asseeninFigure2,calculatestheproportionofbenignsamplesincorrectlyclassifiedasmalicious.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
4
FPR=FalsePositive(FP)/(FalsePositive(FP)+TrueNegative(TN))
Figure2:FalsePositiveRateCalculation
FNR,asseeninFigure3,calculatestheproportionofmalicioussamplesincorrectlyclassifiedasbenign.
FNR=FalseNegative(FN)/(FalseNegative(FN)+TruePositive(TP))
Figure3:FalseNegativeRateCalculation
Thesemetricsprovideameanstoevaluatethemodels’performanceandhelpidentifytheirstrengthsandweaknessesinthecontextofmemoryforensics.
2.2.DataCollection
Thedatacollectionphaseinvolvedacquiringdiversememorydumpsamplesandcategorizingthemasmalicious,benign,orunknown.Toensurethereliabilityand
representativenessofthedataset,memorydumpsfromvarioussources,suchaspubliclyavailabledatasets,malwarerepositories,andreal-worldincidents,willbecollected.
TheVolatilityFrameworkwillextractvaluableinformationfromasystemduringmemoryacquisition,suchasprocesses,loadmodules,handles,andnetworkconnectionsfromeachmemorydumpsample(TheVolatilityFramework,2024).TheVolatility
plugin’soutputcreatesarichsetofartifactsanddatapointstoserveasinputforthe
GenerativeAImodels.ThreeartifactcategoriesofVolatilitypluginswereutilizedduringthisresearch:processes,networkconnections,andsuspiciousactivity.Figure4outlinesthepluginsforeachcategory.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
5
VolatilityFrameworkPlugins
Processes
NetworkConnections
SuspiciousActivity
pslistpsscan
netscan
malfindapihooks
cmdline
timeliner
dlllist
ldrmodules
handles
Figure4:VolatilityPlugins
Thesepluginswerechosenbasedontheirrelevancetomemoryanalysisandtheirabilitytoprovidevaluableinsightsintopotentialmaliciousactivities.
2.3.DataProcessing
Severalpreprocessingstepsmustbeperformedtopreparethecollecteddatafromthememorydump.First,theoutputfromtheVolatilitypluginsmustbecleaned,
aggregated,andconvertedintoastructuredformat,specificallyJavaScriptObjectNotation(JSON).Thisstandardizedformatwillfacilitatethedataingestionintothemodelsandensureconsistencyacrossdifferentmemorydumpsamples.
Next,alabelisappendedtothepreprocesseddatawiththesamplename,
operatingsystem,andthegroundtruthinformationforeachmemorydump.Thegroundtruthlabelswillclassifyeachsampleasmaliciousorbenign,providingareliable
referenceforevaluatingtheperformanceofthemodels.Figure5isthegroundtruthtableutilizedforthesamples.
Malicious
Benign
Sample-1
True
False
Sample-2
True
False
Sample-3
False
True
Sample-4
True
False
Sample-5
True
False
Sample-6
False
True
Figure5:GroundTruthTable
Furthermore,developinganappropriatesystempromptiscrucialforeffectivelyutilizingthemodels.Thepromptisdesignedtoelicitrelevantinformationfromthe
modelsbasedonthepreprocesseddata,enablingthemodeltomakeapredictionand
providemeaningfulinsights.Figure6isthesystempromptutilizedduringtheresearch.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
6
Youareanincidentresponderanalyzingamemorydumpfromapotentially
compromisedWindowssystemusingtheVolatilityframework.YouwillbeprovidedwiththeconsolidatedoutputoftheVolatilitypluginsrunagainstthememorydump.
YourtaskistocarefullyanalyzetheprovidedVolatilitypluginoutputtolookforevidencethatisofmalwareonthesystem.
Usethestep-by-stepinstructionsbelowtobuildaresponsetotheuser’sinput.
Step1-Theuserwillprovideyouwithdata.Providethefollowinginformation:<name>Providethesamplefilename.
<operatingsystem>Providetheoperatingsystemidentifiedinthefile.<key>Providethekeytothelabelkeypairinthedata.
<answer>InformtheuserifthedumpisMalicious,Benign,orUnknown.Onlyprovideoneanswer.
SampleName:<name>
OperatingSystem:<operatingsystem>
TruthLabel:<key>Prediction:<answer>
Step2-WriteoutyouranalysisandreasoningbasedontheVolatilityoutput.CitespecificlinesfromtheVolatilityoutputtojustifyyourreasoningwhereapplicable.
Figure6:SystemPrompt
2.4.ModelEvaluation
Evaluatingthemodelsrequiresasystempromptandingestingthepreprocesseddataintothemodelstoassesstheirperformanceusingquantitativemetrics.The
OpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelswereemployedforthispurpose,leveragingtheiradvanceddataanalysiscapabilitiestoanalyzethememory
dumpdata.
ThepreprocesseddatawasingestedintoOpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelsusingtheirrespectivedeveloperplatforms,OpenAI’sPlayground(Playground,2024)andAnthropic’sWorkbench(Workbench,2024).Theseweb-basedinterfacesprovideauser-friendlyenvironmentfordeveloperstosubmitdataandinteractwiththemodelsthroughtheirAPIs.Theplatformsallowforconfiguringmodel
parameters,suchastemperatureandtokenlimit,andprovideameanstoinputthesystempromptanddata.Uponsubmission,themodelsprocesstheinputandgeneratearesponsecontainingtheiranalysisandclassificationofthememorydumpsamples.Themodel’s
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
7
classificationsarethencomparedagainstthegroundtruthlabelsassociatedwitheachmemorydumpsampletoevaluatethemodels’performanceandcalculatetheaccuracy,FPR,andFNRmetrics.Bycomparingtheevaluationmetricsbetweenthemodels,the
researchwillshowinsightsthatcanbegleanedintotherelativestrengthsandweaknesses.
Insummary,theresearchmethodoutlinedinthissectionprovidesanapproachtoevaluatingtheeffectivenessofeachmodel.ItaimstocontributetotheadvancementofintegratingGenerativeAIintoforensicstechniquestocombatevolvingmalwarethreats.
3.FindingsandDiscussion
3.1.AnalysisofQuantitativeResults
Beforedivingintothequantitativeanalysisofthemodel’sperformance,itis
necessarytounderstandthenatureofthedatasetfedintothemodels.Theinputdatasetconsistedofextractedartifacts(runningprocesses,networkconnections,andsuspiciousmemoryregionswereextracted)frommemorysamples.Thesesamplesencompassedavarietyofmalwarefamilies,suchasransomware,trojans,androotkits,aswellasbenignmemorydumpsfromcleansystems.Includingmaliciousandbenignsampleswas
essentialtoaccuratelyassessthemodels’abilitytodistinguishbetweenthetwoclasses.
Itisimportanttonotethatthedatasetusedinthisanalysiswaslimitedtosix
samplesbutcontainedverycomplexdata.Thedatasetrepresentedvariousscenarios,
encompassingoperatingsystems,systemconfigurations,andmalwarebehaviors.The
complexityofthedatasetposedasignificantchallengeforthemodels,astheyneededtoidentifysubtlepatternsandindicatorsofcompromiseamidstavastamountofmemory
data.Byfeedingthemodelswithsuchacomprehensiveandchallengingdataset,theaimwastoassesstheirabilitytogeneralizeandaccuratelydetectmalwareinmemorydumps.
Thequantitativeanalysisofthemodels’performanceyieldedmeaningfulinsights.Thetruthtableandmodelpredictionsforeachsamplewereusedtocalculatethe
accuracy,FPR,andFNRforboththeGPT-4TurboandClaude3Opusmodels,refertoAppendixA–F.Figure7,AccuracyandErrorRates,consolidatesandprovidesthe
metricsforbothmodels.
wcopeland1981@
Accuracy
1
FalsePositiveRate
0
FalseNegativeRate
0
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
8
OpenAIGPT-4Turbo
AnthropicClaud3Opus
TruePositives(TP)
4
TruePositives(TP)
6
TrueNegatives(TN)
0
TrueNegatives(TN)
0
FalsePositives(FP)
2
FalsePositives(FP)
0
FalseNegatives(FN)
0
FalseNegatives(FN)
0
TotalSamples
6
TotalSamples
6
Accuracy
0.6666667
FalsePositiveRate
1
FalseNegativeRate
0
Figure7:AccuracyandErrorRates
Theaccuracy,FPR,andFNRvaluesrangefrom0to1,providingastandardizedmetricforevaluatingthemodels’performance.Accuracyrepresentstheoverall
correctnessofthemodelsinclassifyingmemorydumpsasmaliciousorbenign.Itis
calculatedbydividingthesumoftruepositives(correctlyidentifiedmalicioussamples)andtruenegatives(correctlyidentifiedbenignsamples)bythetotalnumberofsamples.Anaccuracycloserto1isanindicationofbetteroverallperformance.
Inthisanalysis,theGPT-4Turbomodelachievedanaccuracyof0.6666667,
whichmeansitcorrectlyclassifiedapproximately66.67%ofthesamples.Ontheotherhand,theClaude3Opusmodelachievedanaccuracyof1,indicatingthatitcorrectlyclassifiedallthesamplesinthedataset.
TheFalsePositiveRate(FPR)representstheproportionofbenignsamples
incorrectlyclassifiedasmalicious.Itiscalculatedbydividingthenumberoffalse
positives(benignsamplesincorrectlyidentifiedasmalicious)bythesumoffalse
positivesandtruenegatives(correctlyidentifiedbenignsamples).AnFPRcloserto0isdesirable,asitindicatesalowerrateoffalsealarms.TheGPT-4Turbomodel
demonstratedanFPRof1,incorrectlyclassifyingallbenignsamplesasmalicious.ThishighFPRsuggeststhattheGPT-4Turbomodeltendstogeneratefalsepositives,
potentiallyleadingtounnecessaryinvestigationeffortsandresourceallocation.In
contrast,theClaude3OpusmodelachievedanFPRof0,indicatingthatitdidnot
misclassifyanybenignsamplesasmalicious,whichisidealforreducingfalsealarms.
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
9
TheFalseNegativeRate(FNR)representstheproportionofmalicioussamples
incorrectlyclassifiedasbenign.Itiscalculatedbydividingthenumberoffalsenegatives(malicioussamplesincorrectlyidentifiedasbenign)bythesumoffalsenegativesand
truepositives(correctlyidentifiedmalicioussamples).AnFNRcloserto0ispreferred,asitindicatesalowerrateofmissedmalware.TheGPT-4TurboandClaude3Opus
modelsdemonstratedanFNRof0,indicatingthattheycorrectlyidentifiedallthe
malicioussamplesinthedataset.ThisperfectFNRsuggeststhatbothmodelscandetectmalwarewithoutmissinganymaliciousinstances.
However,itiscrucialtoconsiderthelimitationsofthedatasetusedinthis
analysis.Thedatasetconsistsofalimitednumberofsamples,anditisvitaltoevaluatethemodels’performanceonamoreextensiveanddiversedatasettoassesstheir
generalizationcapability.Additionally,themodel’sabilitytodetectunseenmalwaresamplesinreal-worldscenariosshouldbevalidatedtoensuretheireffectivenessincategorizingsophisticatedandevolvingmalware.
RefertoAppendixA-FtoreviewthecompleteresponsefromGPT-4TurboandClaude3Opusmodelsforthesampledatasubmitted.
3.2.Limitations
Despitethepromisingresults,itisvitaltoacknowledgethelimitationsofthe
currentresearch.Onelimitationisthesizeanddiversityofthedatasetusedfor
evaluation.Whileeffortsweremadetocollectarepresentativesampleofmemorydumps,thedatasetdoesnotencompassallpossiblevariationsandemergingmalwaretechniques.Futureresearchshouldexpandthedatasetandincludeamorecomprehensiverangeof
malwarefamiliesandsystemconfigurations.
Anotherlimitationwastheconstraintposedbythecontextwindowsizeofthe
GPT-4TurboandClaude3Opusmodels.TheClaude3Opusmodelhasasignificantly
largercontextwindow,capableofprocessingupto72,000moretokensthantheGPT-4Turbomodel.ThisdifferenceintokencapacitypresentedchallengeswhensubmittingthedatageneratedbytheVolatilityplugins.Duetotheextensiveamountofdataproduced,
thetokenlimitofthemodelwasexceeded.Aniterativeprocesswasemployedto
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
10
reconfigurethepluginselectiontoensurethatthedatageneratedbytheVolatilitypluginsdidnotexceedthetokenlimitofthemodels.Theobjectivewastofindanoptimal
balancebetweencollectingacomprehensivesetofartifactsandreducingtheoveralldatasize.Theprocessinvolvedexchangingpluginsmultipletimesandevaluatingtheimpactonthetokencount.Aftereachreconfiguration,theresultingdatawassubmittedto
OpenAI’sTokenizer(Tokenizer,2024)andHuggingFacesTokenizertool(TokenizerArena,2024),whichcalculatedthetokensizeofthedata.Thisiterativeprocesswas
repeateduntilthedataforeachmemorydumpsamplewaswithinthe128,000tokens,
ensuringthedatadidnotexceedthecontextwindowforbothmodels.Asaresultofthisoptimization,theinitialsetoftenpluginshadtobenarroweddowntoasubsetofsix
plugins.Figure8presentstherefinedlistofpluginsusedinthefinalanalysis.
VolatilityFrameworkPlugins
Processes
NetworkConnections
SuspiciousActivity
pslistpsscan
netscan
malfindapihooks
cmdline
Figure8:VolatilityPlugins
Thisreductionallowedforthesuccessfulsubmissionofthedatatobothmodelswithoutexceedingtheirtokencapacities.However,italsomeantthatsomepotentiallyvaluableinformationfromtheexcludedpluginscouldnotbeincorporatedintotheanalysis.Thislimitationhighlightsthetrade-offswhenworkingwithAImodelswithdifferentcontextwindowsizes.
Moreover,themodelsusedinthisresearch,GPT-4TurboandClaude3Opus,haveinherentlimitations.Thesemodelsarebasedonnaturallanguageprocessingandmaynotbedesignedexplicitlyformalwaredetectioninmemorydumps.Further,fine-tuningandadaptingthemodelstothespecificdomainofmemoryforensicscould
enhancetheirperformance.
3.3.AreasofImprovement
Severalareasforimprovementcanbeidentifiedbasedonthefindingsand
limitationsdiscussed.First,thepreprocessingtechniquesappliedtothememorydump
datacouldbefurtherrefined.Exploringtechniquestoefficientlycompressorsummarize
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
11
thedatageneratedbytheVolatilitypluginswouldenabletheinclusionofmorecomprehensiveinformationwithinthetokenlimitsofthemodels.
Secondly,thepromptsusedtointeractwiththemodelscanbeoptimized.
Developingmoretargetedandcontext-specificpromptscouldimprovethemodels’
abilitytoidentifymaliciouspatternsaccurately.PromptdevelopmentiscrucialingettingthemostoutofGenerativeAImodels.Researcherscanguidethemodelsbycarefully
designingpromptstoproducemoreaccurateandrelevantresponsesformalwaredetectionandothertasks.
Whenoptimizingprompts,severalkeyfactorsshouldbeconsidered.Thepromptshouldhaveaclearobjective,explicitlystatingwhatthemodelshouldachieve(PromptEngineering,2024).Providingspecificdetailsorparametersrelevanttothetaskcan
furtherguidethemodel’sresponse.Usingconciseandunambiguouslanguagereduces
confusionandimprovesthemodel’sunderstandingofthetask.Includingrelevant
context,framingthepromptasaquestionordirective,andspecifyingtheroleorpersonathemodelshouldadoptcanalsohelprefinetheresponsestyleanddepthaccordingtotheassumedexpertise(PromptEngineering,2024).Breakingcomplextasksintoclear,
manageablestepsandprovidingexamplescanleadtomorestructuredandcoherentresponses(PromptEngineering,2024).
Promptdevelopmentisaniterativeprocessthatrequiresexperimentationand
refinement.Researchersshouldcontinuouslyevaluatethemodel’sresponsesandadjustthepromptsaccordingly.Well-craftedpromptscansignificantlyenhancethemodels’
abilitytoidentifymaliciouspatternsaccuratelyinthecontextofmalwaredetection.Bycarefullydesigningpromptsthatalignwitheachtask’sspecificobjectivesand
requirements,researchersandpractitionerscanharnessthepowerofthesemodelstosolvecomplexproblemsandgeneratevaluableinsights.
Additionally,incorporatingdomain-specificknowledgeandrulesintothemodelscouldenhancetheirperformance.Byintegratingexpertknowledgeandheuristicsfrom
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
12
memoryforensics,themodelscanbeguidedtowardamoreaccurateandcontext-awareprediction.
Furthermore,exploringensembletechniquesthatcombineGenerativeAImodelsorintegratingthemwithtraditionalmalwaredetectionmethodscouldprovideamore
robustapproachtoidentifyingmalwareinmemorydumps.
3.4.ReflectionontheResearchObjective
Theresearchobjectivessetoutatthebeginninghavebeensuccessfullyaddressed.Thequantitativeanalysismethod,utilizingaccuracyanderrorrates,providedameanstoevaluateGenerativeAImodels’performanceindetectingmalwareinmemorydumps.
Thedatacollectionandpreprocessingsteps,leveragingtheVolatilityFrameworkandselectedplugins,enabledtheextractionofartifactsfrommemorydumps.The
preprocesseddatawasinputfortheGenerativeAImodels,facilitatingtheirevaluationandanalysis.
Thefindingsanddiscussionsectionprovidedin-depthinsightsintothemodels’
performance,limitations,andareasforimprovement.Theimplicationsofthefindingsforenhancingmalwaredetectioninmemorywereexplored,highlightingthepotential
benefitsandchallengesassociatedwithintegratingGenerativeAImodelsinmemoryforensics.
4.ImplicationsandRecommendations
4.1.ImplicationsoftheFindings
Thefindingsofthisresearchhavesignificantimplicationsforimprovingmalwaredetectioninmemory.ThegenerativeAImodels’highaccuracyandrelativelylowerrorratesdemonstratetheirpotentialasavaluabletoolformemoryforensicspractitioners.
ByleveragingthepowerofGenerativeAI,investigatorscanautomateand
acceleratetheprocessofanalyzingmemorydumps,enablingthemtoidentifypotential
malwareinfectionsquickly.TheexperimentalresultsinthisstudyshowthattheClaude3Opusmodelachievedaperfectaccuracyscoreof1andanFNRof0,indicatingitsabilitytocorrectlyidentifyallmalicioussampleswithoutmissingany(Figure7).Thislevelof
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
13
accuracycanconsiderablyreducethetimeandenergyrequiredformanualanalysis,
allowingformoreefficientandeffectiveincidentresponse.ResearchhasshownthatAI-basedtechnologiesleveragedindigitalforensicinvestigationscandrasticallysavethe
timeneededtoevaluateanduncoverpotentialsecuritybreaches(Fakiha,2023).
Moreover,theabilityofgenerativeAImodelstolearnandadapttonewmalwarepatternsandtechniquesopenspossibilitiesforproactivethreatdetection.Asnewmalware
variantsemerge,thesemodelscanbecontinuouslytrainedandupdatedtodetectevolving
threats,enhancingorganizations’overallsecurityposture.Researchsuggeststhat
organizationsmustemploycontinuouslearningandadaptivemodelstokeeppacewith
theever-evolvinglandscapeofmalwarethreats(Sindiramutty,2023).However,itis
crucialtoconsiderthelimitationsandpotentialrisksassociatedwithrelyingsolelyon
GenerativeAIformalwaredetection.Falsepositivesandnegativescanhavesignificanteffects,suchaswastedresourcesonbenignsamplesoroverlookingthreats.Inthisstudy,theGPT-4Turbomodel’shighFPRof1.0(Figure7)highlightstheneedforcautionandfurtherrefinement.Therefore,itisrecommendedthatGenerativeAImodelsbeusedasacomplementarytooltoworkalongsidetraditionalmalwaredetectionmethodsandhumananalysis.
4.2.RecommendationsForFutureResearch
Basedontheoutcomesofthisstudy,severalrecommendationsforfutureresearchcanbemadetoenhancetheeffectivenessandapplicabilityofGenerativeAImodelsin
memoryforensics.TheserecommendationsfocusonaddressingthelimitationsidentifiedinthecurrentstudyandexploringnewavenuestofurtheradvancethefieldofAI-assistedmemoryforensics.
4.2.1.ExpandedDataset
Oneofthecriticallimitationsofthecurrentstudyisthelimitedsizeofthedataset,whichconsistedofonlysixmemorydumpsamples.Whilethisdatasetallowedforan
initialevaluationoftheGenerativeAImodels’performance,futureresearchshouldaimtocollectamoreextensiveanddiversedatasettoenhancethemodel’sgeneralization
abilityandrobustness.Expandingthedatasettoincludehundredsorthousandsofmemorydumpsamplesfromvarioussourceswouldprovideamorecomprehensive
wcopeland1981@
LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis
14
representationofreal-worldscenar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021届湖北省孝感市普通高中高一下学期期末考试数学试题
- 2025年建筑施工《春节节后复工复产》工作实施方案 合计3份
- 小学一年级20以内数学口算练习题大全
- 学校聘用教师劳动合同书5篇
- 《肌组织课件》课件
- 你听“你听多美”命题作文写作指导与精彩例文
- 湖南高考语文试题分析报告
- 《劳动定额知识》课件
- 商超连锁店话务员工作总结
- 税务筹划与规划实践经验分享
- 部队保密安全课件
- 园林施工技术创新-洞察分析
- 医院窗帘、隔帘采购 投标方案(技术方案)
- 2025届湖北省高三上学期12月联考语文试题
- 国家开放大学《Photoshop图像处理》章节测试题参考答案
- 期末检测卷(试题)-2024-2025学年三年级上册数学人教版
- 江苏省南京市2023-2024学年高一上学期物理期末试卷(含答案)
- 新疆乌鲁木齐市(2024年-2025年小学五年级语文)人教版阶段练习(上学期)试卷及答案
- 2024年人教版八年级生物上册期末考试卷(附答案)
- JGJ120-2012建筑基坑支护技术规程-20220807013156
- 2024年叉车租赁合同经典版(四篇)
评论
0/150
提交评论