利用生成性人工智能进行记忆分析_第1页
利用生成性人工智能进行记忆分析_第2页
利用生成性人工智能进行记忆分析_第3页
利用生成性人工智能进行记忆分析_第4页
利用生成性人工智能进行记忆分析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

Author:WilliamCopeland,wcopeland1981@Advisor:TimProffitt

Accepted:May28,2024

Abstract

Theincreasingsophisticationofmalwareposessignificantchallengesfortraditional

memoryanalysistechniquesindigitalforensics.Thisresearchexploresthepotentialof

leveragingGenerativeArtificialIntelligence(AI)models,specificallyOpenAI’sGPT-4

TurboandAnthropic’sClaude3Opus,toenhancemalwaredetectioninmemory.By

combiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,thisstudyaimstodevelopaninnovativeapproachforaccuratelyidentifyingandclassifyingmaliciousactivitiesinmemorydumps.Theresearch

methodologyinvolvescollectingadiversesetofmemorydumpsamples,preprocessingthedatausingVolatilityplugins,andevaluatingtheperformanceoftheAImodelsusingquantitativemetrics.

ThefindingshighlightthepotentialofGenerativeAImodelsineffectivelyidentifying

malware,whilealsorevealinglimitationsandareasforimprovement.Theimplications

suggestthatGenerativeAImodelscanserveasvaluablecomplementarytoolsalongsidetraditionalmalwaredetectionmethods,andfutureresearchrecommendationsinclude

expandingdatasets,developingdomain-specificmodels,andintegratingGenerativeAI

capabilitiesintoexistingmemoryforensicsworkflows.ThisstudylaysthefoundationforfurtherexplorationandadvancementofGenerativeAImodelsin-memoryanalysisand

malwaredetection.

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

2

1.Introduction

Indigitalforensics,memoryanalysisiscrucialinuncoveringvaluableevidence

andinsightsfromcomputersystems.Memorydumps,snapshotsofacomputer’svolatilememoryataspecifictime,containawealthofinformationaboutrunningprocesses,

networkconnections,andsystemactivities.However,malware’sincreasing

sophisticationandcomplexityposesignificantchallengesfortraditionalmemoryanalysistechniques.Researchhasshownthatmalwarehasreachedalevelofsophistication,

makingdetectionandanalysisextremelydifficultforforensicinvestigatorsandincidentrespondersduetomalwareauthorsemployingvariousobfuscationandevasion

techniques(Kolbitsch,etal.,2009).

Researchersandpractitionershaveturnedtoadvancedtoolsandframeworksto

addressthesechallenges,suchastheVolatilityFramework.TheVolatilityFrameworkisawidelyusedopen-sourcememoryforensicstoolthatprovidesacollectionofpluginsforextractingandanalyzingdatafrommemorysamplesfromdifferentoperationsystems

(TheVolatilityFramework,2024).However,theeffectivenessofmemoryanalysisheavilyreliesontheabilitytoaccuratelyidentifyandclassifymaliciouspatternsandbehaviorsintheextracteddata.

TheGenerativeArtificialIntelligence(AI)fieldhaswitnessedsignificant

advancementsinrecentyears,openingnewdataanalysisandpatternrecognition

possibilities.ModernGenerativeAImodelsincludeOpenAI’sGPT-4Turboand

Anthropic’sClaude3Opus.GPT-4Turboisalargemultimodalmodelwithalarger

contextwindowof128,000tokens,whichacceptstextorimagesasinputstoproducea

textoutput.Withbroadergeneralknowledgeandadvancedreasoningcapabilities,the

modelcanmoreaccuratelysolvecomplexproblems(Models,2024).Claude3Opusis

Anthropic’smostpowerfulmultimodalmodel,whichdeliversadvancedperformanceanddemonstratesahuman-likeunderstandingoftext(ModelsOverview,2024).Withan

extendedcontextwindowof200,000tokens,themodelcanprocesslargeamountsofdatatocompletehighlycomplextasks(LongContextWindowTips,2024).Toutilizethese

GenerativeAIcapabilities,apaidsubscriptionisrequiredtointeractwiththemodelviawebinterfaceoraccesstothemodelviaApplicationProgrammingInterface(API).

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

3

Overall,bothmodelsarepromisingcandidatesforapplicationinvariousdomains,includingcybersecurityanddigitalforensics.

ThisresearchexploresthepotentialofleveragingGenerativeAImodelsfor

enhancedmalwaredetectioninmemory.BycombiningthedataextractioncapabilitiesoftheVolatilityFrameworkwiththepredictivepowerofGenerativeAI,aninnovative

approachwillbedevelopedthatcanaccuratelyidentifyandclassifymaliciousactivitiesinmemorydumps,ultimatelystrengtheningthecapabilitiesofforensicinvestigatorsincombatingsophisticatedcyberthreats.

2.ResearchMethod

2.1.QuantitativeAnalysisMethod

Thisresearchwillutilizetheaccuracyanderrorratesmethodtoevaluatethe

performanceoftheGenerativeAImodels,specificallyOpenAI’sGPT-4Turboand

Anthropic’sClaude3Opus,inidentifyingmalwarewithmemorydumps.This

quantitativeanalysismethodprovidesastraightforwardapproachtomeasuringthe

overallproportionofsamplescorrectlyclassifiedbythemodel,whichaidsinidentifyingareasofimprovementforthemodel.Keymetricsarecalculatedbycomparingthe

models’predictionswiththegroundtruthlabels,suchasaccuracyanderrorrates,whichconsistoftheFalsePositiveRate(FPR)andFalseNegativeRate(FNR),toassessthe

effectivenessofmalwaredetection.Accuracy,asseeninFigure1,isthemeasurementoftheoverallcorrectnessofthemodelsinidentifyingmaliciousandbenignmemorydumps.

Accuracy=(TruePositive(TP)+TrueNegative(TN))/(TotalInstances)

Figure1:AccuracyCalculation

FPR,asseeninFigure2,calculatestheproportionofbenignsamplesincorrectlyclassifiedasmalicious.

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

4

FPR=FalsePositive(FP)/(FalsePositive(FP)+TrueNegative(TN))

Figure2:FalsePositiveRateCalculation

FNR,asseeninFigure3,calculatestheproportionofmalicioussamplesincorrectlyclassifiedasbenign.

FNR=FalseNegative(FN)/(FalseNegative(FN)+TruePositive(TP))

Figure3:FalseNegativeRateCalculation

Thesemetricsprovideameanstoevaluatethemodels’performanceandhelpidentifytheirstrengthsandweaknessesinthecontextofmemoryforensics.

2.2.DataCollection

Thedatacollectionphaseinvolvedacquiringdiversememorydumpsamplesandcategorizingthemasmalicious,benign,orunknown.Toensurethereliabilityand

representativenessofthedataset,memorydumpsfromvarioussources,suchaspubliclyavailabledatasets,malwarerepositories,andreal-worldincidents,willbecollected.

TheVolatilityFrameworkwillextractvaluableinformationfromasystemduringmemoryacquisition,suchasprocesses,loadmodules,handles,andnetworkconnectionsfromeachmemorydumpsample(TheVolatilityFramework,2024).TheVolatility

plugin’soutputcreatesarichsetofartifactsanddatapointstoserveasinputforthe

GenerativeAImodels.ThreeartifactcategoriesofVolatilitypluginswereutilizedduringthisresearch:processes,networkconnections,andsuspiciousactivity.Figure4outlinesthepluginsforeachcategory.

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

5

VolatilityFrameworkPlugins

Processes

NetworkConnections

SuspiciousActivity

pslistpsscan

netscan

malfindapihooks

cmdline

timeliner

dlllist

ldrmodules

handles

Figure4:VolatilityPlugins

Thesepluginswerechosenbasedontheirrelevancetomemoryanalysisandtheirabilitytoprovidevaluableinsightsintopotentialmaliciousactivities.

2.3.DataProcessing

Severalpreprocessingstepsmustbeperformedtopreparethecollecteddatafromthememorydump.First,theoutputfromtheVolatilitypluginsmustbecleaned,

aggregated,andconvertedintoastructuredformat,specificallyJavaScriptObjectNotation(JSON).Thisstandardizedformatwillfacilitatethedataingestionintothemodelsandensureconsistencyacrossdifferentmemorydumpsamples.

Next,alabelisappendedtothepreprocesseddatawiththesamplename,

operatingsystem,andthegroundtruthinformationforeachmemorydump.Thegroundtruthlabelswillclassifyeachsampleasmaliciousorbenign,providingareliable

referenceforevaluatingtheperformanceofthemodels.Figure5isthegroundtruthtableutilizedforthesamples.

Malicious

Benign

Sample-1

True

False

Sample-2

True

False

Sample-3

False

True

Sample-4

True

False

Sample-5

True

False

Sample-6

False

True

Figure5:GroundTruthTable

Furthermore,developinganappropriatesystempromptiscrucialforeffectivelyutilizingthemodels.Thepromptisdesignedtoelicitrelevantinformationfromthe

modelsbasedonthepreprocesseddata,enablingthemodeltomakeapredictionand

providemeaningfulinsights.Figure6isthesystempromptutilizedduringtheresearch.

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

6

Youareanincidentresponderanalyzingamemorydumpfromapotentially

compromisedWindowssystemusingtheVolatilityframework.YouwillbeprovidedwiththeconsolidatedoutputoftheVolatilitypluginsrunagainstthememorydump.

YourtaskistocarefullyanalyzetheprovidedVolatilitypluginoutputtolookforevidencethatisofmalwareonthesystem.

Usethestep-by-stepinstructionsbelowtobuildaresponsetotheuser’sinput.

Step1-Theuserwillprovideyouwithdata.Providethefollowinginformation:<name>Providethesamplefilename.

<operatingsystem>Providetheoperatingsystemidentifiedinthefile.<key>Providethekeytothelabelkeypairinthedata.

<answer>InformtheuserifthedumpisMalicious,Benign,orUnknown.Onlyprovideoneanswer.

SampleName:<name>

OperatingSystem:<operatingsystem>

TruthLabel:<key>Prediction:<answer>

Step2-WriteoutyouranalysisandreasoningbasedontheVolatilityoutput.CitespecificlinesfromtheVolatilityoutputtojustifyyourreasoningwhereapplicable.

Figure6:SystemPrompt

2.4.ModelEvaluation

Evaluatingthemodelsrequiresasystempromptandingestingthepreprocesseddataintothemodelstoassesstheirperformanceusingquantitativemetrics.The

OpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelswereemployedforthispurpose,leveragingtheiradvanceddataanalysiscapabilitiestoanalyzethememory

dumpdata.

ThepreprocesseddatawasingestedintoOpenAI’sGPT-4TurboandAnthropic’sClaude3Opusmodelsusingtheirrespectivedeveloperplatforms,OpenAI’sPlayground(Playground,2024)andAnthropic’sWorkbench(Workbench,2024).Theseweb-basedinterfacesprovideauser-friendlyenvironmentfordeveloperstosubmitdataandinteractwiththemodelsthroughtheirAPIs.Theplatformsallowforconfiguringmodel

parameters,suchastemperatureandtokenlimit,andprovideameanstoinputthesystempromptanddata.Uponsubmission,themodelsprocesstheinputandgeneratearesponsecontainingtheiranalysisandclassificationofthememorydumpsamples.Themodel’s

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

7

classificationsarethencomparedagainstthegroundtruthlabelsassociatedwitheachmemorydumpsampletoevaluatethemodels’performanceandcalculatetheaccuracy,FPR,andFNRmetrics.Bycomparingtheevaluationmetricsbetweenthemodels,the

researchwillshowinsightsthatcanbegleanedintotherelativestrengthsandweaknesses.

Insummary,theresearchmethodoutlinedinthissectionprovidesanapproachtoevaluatingtheeffectivenessofeachmodel.ItaimstocontributetotheadvancementofintegratingGenerativeAIintoforensicstechniquestocombatevolvingmalwarethreats.

3.FindingsandDiscussion

3.1.AnalysisofQuantitativeResults

Beforedivingintothequantitativeanalysisofthemodel’sperformance,itis

necessarytounderstandthenatureofthedatasetfedintothemodels.Theinputdatasetconsistedofextractedartifacts(runningprocesses,networkconnections,andsuspiciousmemoryregionswereextracted)frommemorysamples.Thesesamplesencompassedavarietyofmalwarefamilies,suchasransomware,trojans,androotkits,aswellasbenignmemorydumpsfromcleansystems.Includingmaliciousandbenignsampleswas

essentialtoaccuratelyassessthemodels’abilitytodistinguishbetweenthetwoclasses.

Itisimportanttonotethatthedatasetusedinthisanalysiswaslimitedtosix

samplesbutcontainedverycomplexdata.Thedatasetrepresentedvariousscenarios,

encompassingoperatingsystems,systemconfigurations,andmalwarebehaviors.The

complexityofthedatasetposedasignificantchallengeforthemodels,astheyneededtoidentifysubtlepatternsandindicatorsofcompromiseamidstavastamountofmemory

data.Byfeedingthemodelswithsuchacomprehensiveandchallengingdataset,theaimwastoassesstheirabilitytogeneralizeandaccuratelydetectmalwareinmemorydumps.

Thequantitativeanalysisofthemodels’performanceyieldedmeaningfulinsights.Thetruthtableandmodelpredictionsforeachsamplewereusedtocalculatethe

accuracy,FPR,andFNRforboththeGPT-4TurboandClaude3Opusmodels,refertoAppendixA–F.Figure7,AccuracyandErrorRates,consolidatesandprovidesthe

metricsforbothmodels.

wcopeland1981@

Accuracy

1

FalsePositiveRate

0

FalseNegativeRate

0

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

8

OpenAIGPT-4Turbo

AnthropicClaud3Opus

TruePositives(TP)

4

TruePositives(TP)

6

TrueNegatives(TN)

0

TrueNegatives(TN)

0

FalsePositives(FP)

2

FalsePositives(FP)

0

FalseNegatives(FN)

0

FalseNegatives(FN)

0

TotalSamples

6

TotalSamples

6

Accuracy

0.6666667

FalsePositiveRate

1

FalseNegativeRate

0

Figure7:AccuracyandErrorRates

Theaccuracy,FPR,andFNRvaluesrangefrom0to1,providingastandardizedmetricforevaluatingthemodels’performance.Accuracyrepresentstheoverall

correctnessofthemodelsinclassifyingmemorydumpsasmaliciousorbenign.Itis

calculatedbydividingthesumoftruepositives(correctlyidentifiedmalicioussamples)andtruenegatives(correctlyidentifiedbenignsamples)bythetotalnumberofsamples.Anaccuracycloserto1isanindicationofbetteroverallperformance.

Inthisanalysis,theGPT-4Turbomodelachievedanaccuracyof0.6666667,

whichmeansitcorrectlyclassifiedapproximately66.67%ofthesamples.Ontheotherhand,theClaude3Opusmodelachievedanaccuracyof1,indicatingthatitcorrectlyclassifiedallthesamplesinthedataset.

TheFalsePositiveRate(FPR)representstheproportionofbenignsamples

incorrectlyclassifiedasmalicious.Itiscalculatedbydividingthenumberoffalse

positives(benignsamplesincorrectlyidentifiedasmalicious)bythesumoffalse

positivesandtruenegatives(correctlyidentifiedbenignsamples).AnFPRcloserto0isdesirable,asitindicatesalowerrateoffalsealarms.TheGPT-4Turbomodel

demonstratedanFPRof1,incorrectlyclassifyingallbenignsamplesasmalicious.ThishighFPRsuggeststhattheGPT-4Turbomodeltendstogeneratefalsepositives,

potentiallyleadingtounnecessaryinvestigationeffortsandresourceallocation.In

contrast,theClaude3OpusmodelachievedanFPRof0,indicatingthatitdidnot

misclassifyanybenignsamplesasmalicious,whichisidealforreducingfalsealarms.

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

9

TheFalseNegativeRate(FNR)representstheproportionofmalicioussamples

incorrectlyclassifiedasbenign.Itiscalculatedbydividingthenumberoffalsenegatives(malicioussamplesincorrectlyidentifiedasbenign)bythesumoffalsenegativesand

truepositives(correctlyidentifiedmalicioussamples).AnFNRcloserto0ispreferred,asitindicatesalowerrateofmissedmalware.TheGPT-4TurboandClaude3Opus

modelsdemonstratedanFNRof0,indicatingthattheycorrectlyidentifiedallthe

malicioussamplesinthedataset.ThisperfectFNRsuggeststhatbothmodelscandetectmalwarewithoutmissinganymaliciousinstances.

However,itiscrucialtoconsiderthelimitationsofthedatasetusedinthis

analysis.Thedatasetconsistsofalimitednumberofsamples,anditisvitaltoevaluatethemodels’performanceonamoreextensiveanddiversedatasettoassesstheir

generalizationcapability.Additionally,themodel’sabilitytodetectunseenmalwaresamplesinreal-worldscenariosshouldbevalidatedtoensuretheireffectivenessincategorizingsophisticatedandevolvingmalware.

RefertoAppendixA-FtoreviewthecompleteresponsefromGPT-4TurboandClaude3Opusmodelsforthesampledatasubmitted.

3.2.Limitations

Despitethepromisingresults,itisvitaltoacknowledgethelimitationsofthe

currentresearch.Onelimitationisthesizeanddiversityofthedatasetusedfor

evaluation.Whileeffortsweremadetocollectarepresentativesampleofmemorydumps,thedatasetdoesnotencompassallpossiblevariationsandemergingmalwaretechniques.Futureresearchshouldexpandthedatasetandincludeamorecomprehensiverangeof

malwarefamiliesandsystemconfigurations.

Anotherlimitationwastheconstraintposedbythecontextwindowsizeofthe

GPT-4TurboandClaude3Opusmodels.TheClaude3Opusmodelhasasignificantly

largercontextwindow,capableofprocessingupto72,000moretokensthantheGPT-4Turbomodel.ThisdifferenceintokencapacitypresentedchallengeswhensubmittingthedatageneratedbytheVolatilityplugins.Duetotheextensiveamountofdataproduced,

thetokenlimitofthemodelwasexceeded.Aniterativeprocesswasemployedto

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

10

reconfigurethepluginselectiontoensurethatthedatageneratedbytheVolatilitypluginsdidnotexceedthetokenlimitofthemodels.Theobjectivewastofindanoptimal

balancebetweencollectingacomprehensivesetofartifactsandreducingtheoveralldatasize.Theprocessinvolvedexchangingpluginsmultipletimesandevaluatingtheimpactonthetokencount.Aftereachreconfiguration,theresultingdatawassubmittedto

OpenAI’sTokenizer(Tokenizer,2024)andHuggingFacesTokenizertool(TokenizerArena,2024),whichcalculatedthetokensizeofthedata.Thisiterativeprocesswas

repeateduntilthedataforeachmemorydumpsamplewaswithinthe128,000tokens,

ensuringthedatadidnotexceedthecontextwindowforbothmodels.Asaresultofthisoptimization,theinitialsetoftenpluginshadtobenarroweddowntoasubsetofsix

plugins.Figure8presentstherefinedlistofpluginsusedinthefinalanalysis.

VolatilityFrameworkPlugins

Processes

NetworkConnections

SuspiciousActivity

pslistpsscan

netscan

malfindapihooks

cmdline

Figure8:VolatilityPlugins

Thisreductionallowedforthesuccessfulsubmissionofthedatatobothmodelswithoutexceedingtheirtokencapacities.However,italsomeantthatsomepotentiallyvaluableinformationfromtheexcludedpluginscouldnotbeincorporatedintotheanalysis.Thislimitationhighlightsthetrade-offswhenworkingwithAImodelswithdifferentcontextwindowsizes.

Moreover,themodelsusedinthisresearch,GPT-4TurboandClaude3Opus,haveinherentlimitations.Thesemodelsarebasedonnaturallanguageprocessingandmaynotbedesignedexplicitlyformalwaredetectioninmemorydumps.Further,fine-tuningandadaptingthemodelstothespecificdomainofmemoryforensicscould

enhancetheirperformance.

3.3.AreasofImprovement

Severalareasforimprovementcanbeidentifiedbasedonthefindingsand

limitationsdiscussed.First,thepreprocessingtechniquesappliedtothememorydump

datacouldbefurtherrefined.Exploringtechniquestoefficientlycompressorsummarize

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

11

thedatageneratedbytheVolatilitypluginswouldenabletheinclusionofmorecomprehensiveinformationwithinthetokenlimitsofthemodels.

Secondly,thepromptsusedtointeractwiththemodelscanbeoptimized.

Developingmoretargetedandcontext-specificpromptscouldimprovethemodels’

abilitytoidentifymaliciouspatternsaccurately.PromptdevelopmentiscrucialingettingthemostoutofGenerativeAImodels.Researcherscanguidethemodelsbycarefully

designingpromptstoproducemoreaccurateandrelevantresponsesformalwaredetectionandothertasks.

Whenoptimizingprompts,severalkeyfactorsshouldbeconsidered.Thepromptshouldhaveaclearobjective,explicitlystatingwhatthemodelshouldachieve(PromptEngineering,2024).Providingspecificdetailsorparametersrelevanttothetaskcan

furtherguidethemodel’sresponse.Usingconciseandunambiguouslanguagereduces

confusionandimprovesthemodel’sunderstandingofthetask.Includingrelevant

context,framingthepromptasaquestionordirective,andspecifyingtheroleorpersonathemodelshouldadoptcanalsohelprefinetheresponsestyleanddepthaccordingtotheassumedexpertise(PromptEngineering,2024).Breakingcomplextasksintoclear,

manageablestepsandprovidingexamplescanleadtomorestructuredandcoherentresponses(PromptEngineering,2024).

Promptdevelopmentisaniterativeprocessthatrequiresexperimentationand

refinement.Researchersshouldcontinuouslyevaluatethemodel’sresponsesandadjustthepromptsaccordingly.Well-craftedpromptscansignificantlyenhancethemodels’

abilitytoidentifymaliciouspatternsaccuratelyinthecontextofmalwaredetection.Bycarefullydesigningpromptsthatalignwitheachtask’sspecificobjectivesand

requirements,researchersandpractitionerscanharnessthepowerofthesemodelstosolvecomplexproblemsandgeneratevaluableinsights.

Additionally,incorporatingdomain-specificknowledgeandrulesintothemodelscouldenhancetheirperformance.Byintegratingexpertknowledgeandheuristicsfrom

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

12

memoryforensics,themodelscanbeguidedtowardamoreaccurateandcontext-awareprediction.

Furthermore,exploringensembletechniquesthatcombineGenerativeAImodelsorintegratingthemwithtraditionalmalwaredetectionmethodscouldprovideamore

robustapproachtoidentifyingmalwareinmemorydumps.

3.4.ReflectionontheResearchObjective

Theresearchobjectivessetoutatthebeginninghavebeensuccessfullyaddressed.Thequantitativeanalysismethod,utilizingaccuracyanderrorrates,providedameanstoevaluateGenerativeAImodels’performanceindetectingmalwareinmemorydumps.

Thedatacollectionandpreprocessingsteps,leveragingtheVolatilityFrameworkandselectedplugins,enabledtheextractionofartifactsfrommemorydumps.The

preprocesseddatawasinputfortheGenerativeAImodels,facilitatingtheirevaluationandanalysis.

Thefindingsanddiscussionsectionprovidedin-depthinsightsintothemodels’

performance,limitations,andareasforimprovement.Theimplicationsofthefindingsforenhancingmalwaredetectioninmemorywereexplored,highlightingthepotential

benefitsandchallengesassociatedwithintegratingGenerativeAImodelsinmemoryforensics.

4.ImplicationsandRecommendations

4.1.ImplicationsoftheFindings

Thefindingsofthisresearchhavesignificantimplicationsforimprovingmalwaredetectioninmemory.ThegenerativeAImodels’highaccuracyandrelativelylowerrorratesdemonstratetheirpotentialasavaluabletoolformemoryforensicspractitioners.

ByleveragingthepowerofGenerativeAI,investigatorscanautomateand

acceleratetheprocessofanalyzingmemorydumps,enablingthemtoidentifypotential

malwareinfectionsquickly.TheexperimentalresultsinthisstudyshowthattheClaude3Opusmodelachievedaperfectaccuracyscoreof1andanFNRof0,indicatingitsabilitytocorrectlyidentifyallmalicioussampleswithoutmissingany(Figure7).Thislevelof

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

13

accuracycanconsiderablyreducethetimeandenergyrequiredformanualanalysis,

allowingformoreefficientandeffectiveincidentresponse.ResearchhasshownthatAI-basedtechnologiesleveragedindigitalforensicinvestigationscandrasticallysavethe

timeneededtoevaluateanduncoverpotentialsecuritybreaches(Fakiha,2023).

Moreover,theabilityofgenerativeAImodelstolearnandadapttonewmalwarepatternsandtechniquesopenspossibilitiesforproactivethreatdetection.Asnewmalware

variantsemerge,thesemodelscanbecontinuouslytrainedandupdatedtodetectevolving

threats,enhancingorganizations’overallsecurityposture.Researchsuggeststhat

organizationsmustemploycontinuouslearningandadaptivemodelstokeeppacewith

theever-evolvinglandscapeofmalwarethreats(Sindiramutty,2023).However,itis

crucialtoconsiderthelimitationsandpotentialrisksassociatedwithrelyingsolelyon

GenerativeAIformalwaredetection.Falsepositivesandnegativescanhavesignificanteffects,suchaswastedresourcesonbenignsamplesoroverlookingthreats.Inthisstudy,theGPT-4Turbomodel’shighFPRof1.0(Figure7)highlightstheneedforcautionandfurtherrefinement.Therefore,itisrecommendedthatGenerativeAImodelsbeusedasacomplementarytooltoworkalongsidetraditionalmalwaredetectionmethodsandhumananalysis.

4.2.RecommendationsForFutureResearch

Basedontheoutcomesofthisstudy,severalrecommendationsforfutureresearchcanbemadetoenhancetheeffectivenessandapplicabilityofGenerativeAImodelsin

memoryforensics.TheserecommendationsfocusonaddressingthelimitationsidentifiedinthecurrentstudyandexploringnewavenuestofurtheradvancethefieldofAI-assistedmemoryforensics.

4.2.1.ExpandedDataset

Oneofthecriticallimitationsofthecurrentstudyisthelimitedsizeofthedataset,whichconsistedofonlysixmemorydumpsamples.Whilethisdatasetallowedforan

initialevaluationoftheGenerativeAImodels’performance,futureresearchshouldaimtocollectamoreextensiveanddiversedatasettoenhancethemodel’sgeneralization

abilityandrobustness.Expandingthedatasettoincludehundredsorthousandsofmemorydumpsamplesfromvarioussourceswouldprovideamorecomprehensive

wcopeland1981@

LeveragingGenerativeArtificialIntelligenceforMemoryAnalysis

14

representationofreal-worldscenar

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论