版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省丰城四中2025届高三第五次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在上单调递增,则的取值范围()A. B. C. D.2.若函数在时取得极值,则()A. B. C. D.3.已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为()A. B. C. D.4.已知,则,不可能满足的关系是()A. B. C. D.5.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.6.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A. B. C. D.7.已知函数,,的零点分别为,,,则()A. B.C. D.8.若复数(为虚数单位),则()A. B. C. D.9.若,则“”的一个充分不必要条件是A. B.C.且 D.或10.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.411.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则12.下列函数中,图象关于轴对称的为()A. B.,C. D.二、填空题:本题共4小题,每小题5分,共20分。13.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为____.14.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为__________.15.经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是________________.16.设实数,满足,则的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,正方形所在平面外一点满足,其中分别是与的中点.(1)求证:;(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.18.(12分)设函数.(1)若函数在是单调递减的函数,求实数的取值范围;(2)若,证明:.19.(12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的锐二面角的余弦值.20.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项.(1)求证:数列为等差数列;(2)设,求的前100项和.21.(12分)已知在中,角,,的对边分别为,,,且.(1)求的值;(2)若,求面积的最大值.22.(10分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.326.4741.90310209.7614.05(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.(2)使用参考数据,估计2020年的全国GDP总量.线性回归方程中斜率和截距的最小二乘法估计公式分别为:,.参考数据:45678的近似值5514840310972981
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由,可得,结合在上单调递增,易得,即可求出的范围.【详解】由,可得,时,,而,又在上单调递增,且,所以,则,即,故.故选:B.【点睛】本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.2、D【解析】
对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.3、A【解析】
设,则MF的中点坐标为,代入双曲线的方程可得的关系,再转化成关于的齐次方程,求出的值,即可得答案.【详解】双曲线的右顶点为,右焦点为,M所在直线为,不妨设,∴MF的中点坐标为.代入方程可得,∴,∴,∴(负值舍去).故选:A.【点睛】本题考查双曲线的离心率,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意构造的齐次方程.4、C【解析】
根据即可得出,,根据,,即可判断出结果.【详解】∵;∴,;∴,,故正确;,故C错误;∵,故D正确故C.【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:和不等式的应用,属于中档题5、C【解析】
由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.6、C【解析】
求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论.【详解】,.若存在极值,则,又.又.故选:C.【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.7、C【解析】
转化函数,,的零点为与,,的交点,数形结合,即得解.【详解】函数,,的零点,即为与,,的交点,作出与,,的图象,如图所示,可知故选:C【点睛】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.8、B【解析】
根据复数的除法法则计算,由共轭复数的概念写出.【详解】,,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.9、C【解析】,∴,当且仅当时取等号.故“且”是“”的充分不必要条件.选C.10、D【解析】
用去换中的n,得,相加即可找到数列的周期,再利用计算.【详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.11、C【解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.12、D【解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。14、【解析】
基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,由此能求出抽得的第一张卡片上的数不小于第二张卡片上的数的概率.【详解】从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,分别为:,,,,,,,,,,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为.故答案为:【点睛】本题考查古典概型概率的求法,考查运算求解能力,求解时注意辨别概率的模型.15、【解析】
作出图形,设点,则、,设点,利用点差法得出,利用斜率公式得出,进而可得出,可得出,由此可求得的值.【详解】设点,则、,设点,则,两式相减得,即,即,由斜率公式得,,,故,因此,.故答案为:.【点睛】本题考查椭圆中角的余弦值的求解,涉及了点差法与斜率公式的应用,考查计算能力,属于中等题.16、1【解析】
根据目标函数的解析式形式,分析目标函数的几何意义,然后判断求出目标函数取得最优解的点的坐标,即可求解.【详解】作出实数,满足表示的平面区域,如图所示:由可得,则表示直线在轴上的截距,截距越小,越大.由可得,此时最大为1,故答案为:1.【点睛】本题主要考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)先证明EF平面,即可求证;(2)根据二面角的余弦值,可得平面,以为坐标原点,建立空间直角坐标系,利用向量计算线面角即可.【详解】(1)连接,交于点,连结.则,故面.又面,因此.(2)由(1)知即为二面角的平面角,且.在中应用余弦定理,得,于是有,即,从而有平面.以为坐标原点,建立如图所示的空间直角坐标系,则,于是,,设平面的法向量为,则,即,解得于是平面的一个法向量为.设直线与平面所成角为,因此.【点睛】本题主要考查了线面垂直,线线垂直的证明,二面角,线面角的向量求法,属于中档题.18、(1)(2)证明见解析【解析】
(1)求出导函数,由在上恒成立,采用分离参数法求解;(2)观察函数,不等式凑配后知,利用时可证结论.【详解】(1)因为在上单调递减,所以,即在上恒成立因为在上是单调递减的,所以,所以(2)因为,所以由(1)知,当时,在上单调递减所以即所以.【点睛】本题考查用导数研究函数的单调性,考查用导数证明不等式.解题关键是把不等式与函数的结论联系起来,利用函数的特例得出不等式的证明.19、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(1)取中点,连,,由等边三角形三边合一可知,,即证.(2)以,,为正方向建立空间直角坐标系,由向量法可求得平面与平面所成的锐二面角的余弦值.试题解析:(Ⅰ)证明:连,,则和皆为正三角形.取中点,连,,则,,则平面,则(Ⅱ)由(Ⅰ)知,,又,所以.如图所示,分别以,,为正方向建立空间直角坐标系,则,,,设平面的法向量为,因为,,所以取面的法向量取,则,平面与平面所成的锐二面角的余弦值.20、(1)证明见解析;(2).【解析】
(1)利用已知条件化简出,当时,,当时,再利用进行化简,得出,即可证明出为等差数列;(2)根据(1)中,求出数列的通项公式,再化简出,可直接求出的前100项和.【详解】解:(1)由题意知,即,①当时,由①式可得;又时,有,代入①式得,整理得,∴是首项为1,公差为1的等差数列.(2)由(1)可得,∵是各项都为正数,∴,∴,又,∴,则,,即:.∴的前100项和.【点睛】本题考查数列递推关系的应用,通项公式的求法以及裂项相消法求和,考查分析解题能力和计算能力.21、(1);(2).【解析】分析:(1)在式子中运用正弦、余弦定理后可得.(2)由经三角变换可得,然后运用余弦定理可得,从而得到,故得.详解:(1)由题意及正、余弦定理得,整理得,∴(2)由题意得,∴,∵,∴,∴.由余弦定理得,∴,,当且仅当时等号成立.∴.∴面积的最大值为.点睛:(1)正、余弦定理经常与三角形的面积综合在一起考查,解题时要注意整体代换的应用,如余弦定理中常用的变形,这样自然地与三角形的面积公式结合在一起.(2)运用基本不等式求最值时,要注意等号成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融服务外包案例
- 幼儿期口腔护理常规
- 方案策划范文集合六篇
- 6.6爱眼日活动工作总结10篇
- 西班牙课件教学课件
- 学生道歉信(汇编15篇)
- 大学生社会实践心得体会【5篇】
- 升职申请书范文集合7篇
- 植树节倡议书模板集合七篇
- 2022秋季学校工作计划10篇
- 分形缺陷的电磁波调控
- 2024全球智能家居市场洞察报告
- 艺术中国智慧树知到答案2024年上海戏剧学院
- TZGCSC 009-2024 数字道路路侧雷视一体机技术规范
- 中职汽修专业《汽车维修基础》说课稿
- Unit 6 Meet my family 单元整体教学说课(教学设计)-2024-2025学年人教PEP版英语四年级上册
- 外商投资准入特别管理措施(负面清单)(2024年版)
- 铭记历史 勿忘国耻九一八事变教育主题班会课件
- 气候可行性论证技术规范第8部分:能源化工类园区
- 计算机组装与维护-考试附有答案
- 2024届江苏省苏州市八校联考高三三模语文试题
评论
0/150
提交评论