专题3.1 概率的进一步认识【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第1页
专题3.1 概率的进一步认识【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第2页
专题3.1 概率的进一步认识【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第3页
专题3.1 概率的进一步认识【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第4页
专题3.1 概率的进一步认识【十大题型】-2024-2025学年九年级数学上册举一反三系列(北师大版)_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE1专题3.1概率的进一步认识【十大题型】【北师大版】TOC\o"1-3"\h\u【题型1事件的分类】 1【题型2可能性的大小】 3【题型3简单概率的计算】 5【题型4几何概率】 7【题型5游戏的公平性】 10【题型6概率在比赛中的运用】 14【题型7概率在抽奖中的运用】 19【题型8概率的其它实际应用】 25【题型9用频率估计概率】 28【题型10概率与统计的综合】 31知识点1:事件的分类在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不会发生的事件称为随机事件。必然事件与不可能事件就是否会发生,就是可以事先确定的,所以它们统称为确定性事件。【题型1事件的分类】【例1】(23-24九年级·陕西西安·期末)有两个事件,事件A:3人中至少有2人性别相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为3的倍数.下列说法正确的是(

)A.事件A、B都是随机事件 B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件 D.事件A是必然事件,事件B是随机事件【答案】D【分析】本题考查了事件的分类,根据事件发生的可能性大小判断,解题的关键是正确理解必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【详解】事件A:3人中至少有2人性别相同是必然事件,事件B:抛掷一枚均匀的骰子,朝上的面点数为3的倍数是随机事件,∴事件A是必然事件,事件B是随机事件,故选:D.【变式1-1】(23-24九年级·江苏宿迁·期末)小明和小丽按如下规则做游戏:桌面上放有17根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明一定获胜,则小明第一次取走火柴棒的根数是.【答案】2【分析】本题考查了必然事件.判断出使两人所取的根数之和为3是解题的关键.由题意知,小明第一次取2根,然后保证第二次所取的根数和小丽所取的根数和为3,则小明必然要取到第17根.【详解】解:由题意知,小明第一次取2根,然后保证第二次所取的根数和小丽所取的根数和为3,则小明必然要取到第17根火柴,小明一定获胜,∴小明先取,第一次取走2根,故答案为:2.【变式1-2】(23-24九年级·河南平顶山·期末)下列说法不正确的是()A.“过一点可以作两条直线与已知直线垂直”是不可能事件B.“三角形的一条中线平分三角形的面积”是必然事件C.“以三条长度为连续正整数的线段为边可以构成三角形”是随机事件D.“两边和一角分别相等的两个三角形全等”是必然事件【答案】D【分析】利用随机事件以及必然事件的定义对各选项进行判断得出答案.【详解】解:A、“过一点有且只有一条直线与已知直线垂直”,故此选项正确,不符合题意;B、“三角形的一条中线平分三角形的面积”正确,故此选项正确,不符合题意;C、“以三条长度为连续正整数的线段为边可以构成三角形”是随机事件,比如三条长度为3,4,5的可以构成三角形,三条长度为1,2,3不可以构成三角形,故此选项正确,不符合题意;D、“两边和一角分别相等的两个三角形全等”是随机事件,如果两边夹角,即SAS,那么两个三角形全等,如果两边不夹角,那么两个三角形不全等,故此选项错误,符合题意,故选:D.【点睛】此题考查了必然事件和随机事件的定义,正确把握相关事件的定义是解题的关键.【变式1-3】(2024·宁夏石嘴山·一模)如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关 B.只闭合2个开关C.只闭合3个开关 D.闭合4个开关【答案】B【分析】本题考查事件分类的判断,根据题意及事件的分类进行判定即可.【详解】解:A、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B.知识点2:可能性的大小必然事件的可能性最大,不可能事件的可能性最小,随机事件发生的可能性有大有小。不同的随机事件发生的可能性的大小有可能不同。【题型2可能性的大小】【例2】(23-24九年级·江苏南京·期中)九年级(1)班有40位同学,他们的学号是1−40,随机抽取一名学生参加座谈会,下列事件:①抽到的学号为奇数;②抽到的学号是个位数;③抽到的学号不小于35.其中,发生可能性最小的事件为(填序号).【答案】③【分析】分别求出三个事件的可能性,再比较大小即可得到答案.【详解】解:①抽到的学号是奇数的可能性为2040②抽到的学号是个位数的可能性为940③抽到的学号不小于35的可能性为640∵3∴发生可能性最小的事件为为③,故答案为:③.【点睛】本题主要考查了基本可能性的计算及比较可能性大小,用到的知识点为:可能性等于所求情况数与总情况数之比.【变式2-1】(16-17九年级·全国·课后作业)在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是.【答案】减少有效分中有受贿裁判评分的可能性【详解】若有1人受贿,则原先有受贿裁判评分的概率是79,现在有受贿裁判评分的概率为7【变式2-2】(2024·江西南昌·一模)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的概率较大,那么袋中白球的个数可能是(

).A.2 B.3 C.4 D.5【答案】D【分析】根据概率公式求出白球的取值范围即可得出结论.【详解】解:若要使取到白球的概率较大,则白球的个数>红球的个数由各选项可知,只有D选项符合故选D.【点睛】此题考查的是比较概率的大小,掌握概率公式是解决此题的关键.【变式2-3】(23-24九年级·四川达州·期末)不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.【答案】黄【分析】本题主要考查了可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目.分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性最小.【详解】解:因为袋子中有4个红球、3个黄球和5个蓝球,从中任意摸出一个球,①为红球的概率是412②为黄球的概率是312③为蓝球的概率是512512∴可见摸出黄球的概率最小.故答案为:黄.知识点3:概率一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A)。一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=mn。由m与n的含义可知0≤m≤n,因此0≤m当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.【题型3简单概率的计算】【例3】(23-24九年级·四川绵阳·期末)在2,3,12,32四个数中任取其中两个数相乘,乘积为有理数的概率等于(

)A.12 B.13 C.14【答案】B【分析】本题考查了实数的乘法运算和概率的计算,关键在于计算要准确,并明确概率=所求情况数与总情况数之比.分别取出两数,求出两数的乘积,根据概率的求法,即可得答案.【详解】解:在2,3,12=23,则分别为2×2×2×3×3×12×所以乘积为正有理数的概率等于26故选:B.【变式3-1】(23-24九年级·四川宜宾·期末)一个不透明的口袋中装有若干个除颜色不同外其它都相同的小球,已知口袋中只装有3个红球,且摸到红球的概率为14,那么口袋中小球的总数为(

A.4 B.9 C.12 D.15【答案】C【分析】本题考查随机事件与概率以及概率的应用,运用概率公式即可计算.【详解】解:口袋中小球的总数为:3÷1故选C.【变式3-2】(23-24九年级·湖北武汉·期末)某路口的人行造交通信号灯每分钟红灯亮25秒,绿灯亮30秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是.【答案】5【分析】本题考查了概率,根据题意和概率公式即可得,掌握概率公式是解题的关键.【详解】解:∵每分钟红灯亮25秒,绿灯亮30秒,黄灯亮5秒,∴当小明到达该路口时,遇到红灯的概率:2525+30+5故答案为:512【变式3-3】(23-24九年级·四川南充·期末)如图,有4张除图案不同外其余完全相同的卡片,现将这些卡片有图案的一面朝下洗匀,随机抽取1张,抽到的卡片上的图案可以作为一个正方体平面展开图的概率为.【答案】3【分析】此题主要考查了概率公式和正方体展开图,能围成正方体的有3种,再根据概率公式进行计算,即可得出答案,解题的关键是掌握概率的计算公式.【详解】如图可得到,除了第三个图外,剩下的3个图都能围成正方体,故随机抽出一张,上面的图案能够围成一个正方体的概率是34故答案为:34【题型4几何概率】【例4】(23-24九年级·山东烟台·期末)如图,连接正六边形ABCDEF的对角线BE,CE,交对角线AD于点M,N.一只蚂蚁在正六边形内随机爬行,则它停留在阴影部分的概率是(

)A.12 B.23 C.714【答案】D【分析】本题主要考查几何概率的知识,根据阴影部分面积占正六边形ABCDEF面积的比例得出概率是解题的关键,将对角线和EF,BC的中点连接,设△NDE的面积为a,则正六边形ABCDEF的面积为12a,阴影的面积为7a,利用几何概率即可求得答案.【详解】解:作如图所示连接,设△NDE的面积为a,则正六边形ABCDEF的面积为12a,阴影的面积为7a,那么,一只蚂蚁在正六边形内随机爬行,则它停留在阴影部分的概率是7a12a故选∶D.【变式4-1】(23-24九年级·山东威海·期末)如图,飞镖游戏板被等分成若干个相同的小正方形,某位同学向游戏板投掷飞镖,假设飞镖落在游戏板上每个点的概率相同,则落在涂色部分的概率为.【答案】14/【分析】本题考查了几何概率的应用,属于简单题,用涂色部分的面积除以图形总面积即可得到答案.【详解】解:涂色部分的面积为1×1+1×2+1×1+1×2=6,∴飞镖落在涂色部分的概率=6故答案为:1【变式4-2】(2024·山东临沂·一模)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为()A.12 B.13 C.14【答案】B【分析】计算出黑色区域的面积与整个图形面积的比,利用几何概率的计算方法解答即可.【详解】解:∵根据题意得:S总∴黑色区域的面积S黑∴飞镖落在黑色区域的概率为13故选:B.【点睛】此题考查了几何概率,首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.【变式4-3】(23-24九年级·山西大同·期末)如图,△ABC的面积为10cm2,BP平分∠ABC,AP⊥BP,垂足为P,连接CP,若三角形内有一点M,则点M落在△BPCA.12 B.13 C.23【答案】A【分析】本题主要考查了全等三角形,三角形的面积,概率.熟练掌握全等三角形的性质和判定,三角形的面积公式,概率公式,是解决问题的关键.由角平分线和垂线证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,【详解】延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,∠ABP=∠EBFBP=BP∴△ABP≌△EBPASA∴AP=PE,∴S△ABP=S∴S△PBC∴点M落在△BPC内(包括边界)的概率为,S△PBC故选:A.知识点4:用列表法、树状图法求概率列表法:当一次试验要涉及两个因素并且可能出现得结果数目较多时,为不重不漏地列出所有可能得结果,通常用列表法。列表法就是用表格得形式反映事件发生得各种情况出现的次数与方式,以及某一事件发生的可能的次数与方式,并求出概率的方法。树状图法:当一次试验要涉及3个或更多得因素时,列方形表就不方便了,为不重不漏地列出所有可能得结果,通常采用树形图。树形图就是反映事件发生得各种情况出现得次数与方式,并求出概率得方法。(1)树形图法同样适用于各种情况出现得总次数不就是很大时求概率得方法。(2)在用列表法与树形图法求随机事件得概率时,应注意各种情况出现得可能性务必相同。【题型5游戏的公平性】【例5】(23-24九年级·新疆吐鲁番·期末)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.【答案】(1)13(2)这个游戏规则对双方不公平,理由见解析.【分析】(1)列出表格,根据表格即可求解;(2)分别求出和为奇数和偶数的概率即可判断求解;本题考查了用树状图或列表法求概率,游戏的公平性,掌握树状图或列表法是解题的关键.【详解】(1)解:列表如下:23422+2=42+3=52+4=633+2=53+3=63+4=744+2=64+3=74+4=8由表可知,共有9种等结果,其中和为6的结果有3种,∴这两数和为6的概率为39(2)解:这个游戏规则对双方不公平,理由如下:由表可得,P和为奇数=4∵49∴这个游戏规则对双方不公平.【变式5-1】(23-24九年级·海南儋州·期末)某校2024年元旦晚会上,九年级共有20名同学参加志愿者的工作,其中男生15人,女生5人.(1)若从这20人中随机选取一人作为联络员,则选到女生的概率为;(2)若某项志愿工作只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将3张牌面数字分别为1、2、3的扑克牌洗匀后,数字朝下放于桌面,甲从中任取1张,记录后放回,乙再从中任取1张,若牌面数字之和为偶数,则甲参加,否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.【答案】(1)1(2)游戏不公平,见解析【分析】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个人的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.(1)直接利用概率公式求出即可;(2)利用树状图表示出所有可能的结果数和牌面数字之和为偶数的结果数,进而利用概率公式求出即可.【详解】(1)解:∵共20名志愿者,女生5人,∴选到女生的概率是:520(2)解:不公平,根据题意画树状图如图:由图可知,所有可能的结果共有9种情况,和为偶数的情况有5种,∴牌面数字之和为偶数的概率是59∴甲参加的概率是59,乙参加的概率是1−∵59∴这个游戏不公平.【变式5-2】(23-24九年级·广东韶关·期末)一个不透明的袋中装有3个小球,分别标有数字−2、3、−4,这些小球除所有标数字不同外,其余完全相同,小明从中任意摸出一球,所标数字记为x,另有4张背面完全相同,正面分别标有数字3、−1、−4、5的卡片,小亮将其混合后,背面朝上放置于桌面,并从中随机抽取一张,卡片上的数字记为y.(1)若以x为横坐标,y为纵坐标,求点Ax,y(2)小明和小亮做游戏,规则是若点Ax,y落在第二象限,则小明赢;若A【答案】(1)1(2)公平,理由见解析【分析】本题主要考查了列举法求概率,正确作出树状图是解题关键.(1)根据题意作出树状图,根据树状图求解即可;(2)结合柱状图求出Ax,y【详解】(1)(1)列树状图如下,由树状图可知,共有12种等可能的结果,符合条件的情况有4种,所以P点(2)公平,理由如下:由(1)树状图可得,P点P点所以游戏公平.【变式5-3】(2024·山东青岛·模拟预测)在学校开展的数学活动课上,小明、小红和小刚制作了一个正三棱锥(质量均匀,4个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下:小明和小刚投掷三棱锥各1次,并记录底面的数字,如果两次投掷所得底面数字相等,那么重新投掷;如果两次投掷所得底面数字的和小于5,那么小明赢;如果两次投掷所得底面数字的和等于5,那么小红赢;如果两次投掷所得底面数字的和大于5,那么小刚赢.(1)投掷1次,底面数字出现3是事件(填“不可能”“必然”或“随机”);投掷两次,底面数字和为5的概率为.(2)请用列表或画树状图的方法表示上述游戏中所有可能出现的结果,分别求出小明、小红和小刚赢的概率,并判断此游戏对三人是否公平.【答案】(1)随机,1(2)此游戏对三人是公平的【分析】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.也考查了列表法与树状图法.(1)根据题意在表格内列举出所有情形,找出所有等可能的情况数,得出投掷两次,底面数字和为5的情况即可求解;(2)根据题意列出表格,分别求出三人获胜得概率,比较即可得到游戏公平与否.【详解】(1)解:投掷1次,底面数字出现3是随机事件;列表如下:12341345235634574567从上表可知,共有12种等可能的情况,投掷两次,底面数字和为5的情况有4种,故投掷两次,底面数字和为5的概率为412故答案为:随机,13(2)由(1)可知,两次投掷所得底面数字的和小于5的情况有4种,则小明赢的概率为412两次投掷所得底面数字的和等于5的情况有4种,则小红赢的概率为412两次投掷所得底面数字的和大于5的情况有4种,则小刚赢的概率为412故此游戏对三人是公平的.【题型6概率在比赛中的运用】【例6】(23-24九年级·全国·单元测试)小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏。他们用四个字母做成10枚棋子,如图,棋子A有1枚,棋子B有2枚,棋子C有3枚,棋子D有4枚.“字母棋”的游戏规则如下:①游戏时两人各摸一枚棋子进行比赛称为一轮比赛,先摸者摸出的棋子不放回;②棋子A胜棋子B、棋子C,棋子B胜棋子C、棋子D,棋子C胜棋子D,棋子D胜棋子A;③相同棋子不分胜负.

(1)若小玲先摸,则小玲摸到棋子C的概率是多少?(2)已知小玲先摸到了棋子C,小军在剩余的9枚棋子中随机摸一枚,这一轮小玲胜小军的概率是多少?(3)当小玲摸到什么棋子时,胜小军的概率最大?【答案】(1)3(2)小玲胜小军的概率是4(3)当小玲摸到棋子B时,胜小军的概率最大【分析】(1)画出树状图,根据概率公式进行作答即可;(2)已知小玲先摸到了棋子C,还剩9枚棋子,因为棋子C胜棋子D,只有4枚棋子,即可知道这一轮小玲胜小军的概率;(3)分情况讨论,根据概率的大小即可得出结论.【详解】(1)解:根据题意,画出树状图:

共有10个等可能的结果,小玲摸到棋子C的结果有3个,所以若小玲先摸,则小玲摸到棋子C的概率是310(2)解:因为小玲先摸到了棋子C,若小军在剩余的9枚棋子中随机摸一枚,那小军摸到棋子的结果有9个,只有当小军摸到棋子D,此时小玲胜小军,所以这一轮小玲胜小军的概率为49(3)解:①若小玲摸到A棋,小军摸到B,C棋,小玲胜,∴小玲胜小军的概率是59②若小莹摸到B棋,小军摸到D,C棋,小玲胜,∴小玲胜小军的概率是79③若小玲摸到C棋,小军摸到D棋,小玲胜,小玲胜小军的概率是49④若小玲摸到D棋,小军摸到A棋,小玲胜,∴小玲胜小军的概率是19∵79>5【点睛】本题考查了树状图法以及概率公式,正确掌握概率公式是解题的关键.【变式6-1】(23-24九年级·四川眉山·期末)学校“艺术节”期间,初三一班的小明、小亮都想去参加歌唱比赛,但每个班只有一个名额.他们决定采用摸球的办法确定谁去.规则如下:将四个完全相同的乒乓分别标注数字1、2、3、4放在一个不透明的盒子里,随机摸出一个球不放回;再随机摸出一个.如果摸出的两个球上的数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法求出摸出的两个球上的数字之和为奇数的概率;(2)你认为这个规则公平吗?请说明理由.【答案】(1)2(2)不公平,理由见解析【分析】对于(1),列表表示出所有可能出现的结果,再根据概率公式得出答案;对于(2),求出两个球上的数字之和是偶数的概率,比较得出答案.【详解】(1)列表如下:123412+1=33+1=44+1=521+2=33+2=54+2=631+3=42+3=54+3=741+4=52+4=63+4=7一共有12种可能出现的结果,每种结果出现的可能性相同,两个数之和是奇数的有8种,所以两个数之和是奇数的概率是812(2)游戏不公平,理由如下:小明获胜的概率是23,小亮获胜的概率是1由23【点睛】本题主要考查了列表(树状图)求概率,掌握概率公式是解题的关键.【变式6-2】(2024·新疆·二模)一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关.第一道题有4个选项,第二道题有3个选项,这两道题小新都不会,不过小新还有一个“求助卡”没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.(1)如果小新在第--题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;(2)从概率的角度分析,你建议小新在第几题使用“求助卡”.为什么.【答案】(1)19【分析】(1)画树状图展示所有9种等可能的结果数,找出小新都选对的结果数,然后根据概率公式计算;(2)如果小新在第二题使用“求助卡”,画树状图展示所有8种等可能的结果数,找出小新都选对的结果数,利用概率公式计算出小新顺利通过第一关的概率,然后比较两个概率的大小可判断小新在第几题使用“求助卡“.【详解】解:(1)列树状图如下:共有9种等可能的结果,其中两道题都正确的结果有1个,所以小新顺利通过第一关的概率为1(2)建议小明在第二题使用“求助卡”,若第二题使用“求助卡”,可列树状图如下:此时小新顺利通过第一关的概率为1因为18所以建议小新在第二题使用“求助卡”【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.【变式6-3】(23-24九年级·辽宁营口·阶段练习)某体育馆有A,B两个入口,每个入口有3个通道可同时通行,C,D,E三个出口,其中C、D出口有2个通道,E出口只有一个通道,每个通道在规定时间内可通行100人,规定:观众进馆时须持票任意从两个入口进入,出馆时只可任意从三个出口离开.甲、乙、丙三名观众分别从两个入口中随机选择一个入口进入.(1)求甲从A口进入,C口离开的概率;(2)求甲、乙、丙三名观众选择同一入口进馆的概率.(3)学校有七、八、九三个年级的学生进场观看比赛,九年级80人,九年级150人,九年级160人,比赛结束后,为了能够在规定时间内使所有同学都能有序离开,请你合理安排七、八、九三个年级的学生从C、D、E三个出口(每个年级的学生走同一个出口)离开(安排一种即可),并说明理由.【答案】(1)1(2)1(3)九年级走E出口,八九年级走C、D出口,理由见解析【分析】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.(1)画树状图,共有6种等可能的结果,其中甲从A口进入,C口离开的结果有1种,再由概率公式求解即可;(2)画树状图,共有8种等可能的结果,其中甲、乙、丙三名观众选择同一入口进馆的结果有2种,再由概率公式求解即可;(3)满足题意的方案即可.【详解】(1)解:(1)画树状图如下:共有6种等可能的结果,其中甲从A口进入,C口离开的结果有1种,

∴甲从A口进入,C口离开的概率为16(2)画树状图如下:共有8种等可能的结果,其中甲、乙、丙三名观众选择同一入口进馆的结果有2种,

∴甲、乙、丙三名观众选择同一入口进馆的概率为28(3)九年级走E出口,八九年级走C、D出口.理由:因为九年级80人,九年级150人,九年级160人,又因为C、D出口有2个通道,E出口只有一个通道,且每个通道在规定时间内可通行100人,所以按九年级走E出口,八九年级走C、D出口方案,能够在规定时间内使所有同学都能有序离开.【题型7概率在抽奖中的运用】【例7】(23-24九年级·山西长治·阶段练习)综合与实践【问题再现】(1)有这样一道概率题:如图1,这是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在蓝色区域和橙色区域的概率分别是多少?请你解答.【类比设计】(2)在元旦晚会上班长想设计一个摇奖转盘.请你在图2中设计一个转盘,自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为12,二等奖:指针落在白色区域的概率为13,一等奖:指针落在黄色区域的概率为【拓展运用】(3)在一次促销活动中,某商场为了吸引顾客,设立转盘,转盘被平均分为10份,顾客每消费200元转动1次,对准红1份,黄2份、绿3份区域,分别得奖金100元、50元、30元购物券,求转动1次所获购物券的平均数.【答案】(1)P(蓝色区域)=14,P(2)见解析(3)29元【分析】(1)根据概率公式进行计算即可;(2)将转盘均分成6份,根据概率求出各种颜色所占份数,即可得解;(3)利用对准红、黄、绿的概率乘以各自对应的钱数,即可得解.【详解】(1)解:根据几何概率的意义可知,P(蓝色区域)=90°P(橙色区域)=270°(2)解:根据题意,将转盘均分成6份,则:红色占:6×12=3份;白色占:6×如图所示:(答案不唯一);(3)解:由题意,得:转动1次的平均数为100×1答:转动1次所获购物券的平均数是29元.【点睛】本题考查概率的应用,以及计算加权平均数.熟练掌握概率公式,以及加权平均数的计算方法,是解题的关键.【变式7-1】(23-24九年级·陕西渭南·期末)如图,图1、图2是可以自由转动的两个转盘.图1被平均分成9等份,分别标有1,2,3,4,5,6,7,8,9这9个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字;图2被涂上红色与绿色,绿色部分的扇形圆心角是120°.转动转盘,当转盘停止后,指针指向的颜色即为转出的颜色.(1)在图1转盘中转出数字6的概率为________.(2)小明转动图1的转盘,小亮转动图2的转盘.若某个转盘的指针恰好指在分界线上时重转.小颖认为:小明转出的数字小于7的概率与小亮转出的颜色是红色的概率相同.小颖的观点对吗?为什么?【答案】(1)1(2)小颖的观点是对的,理由见解析【分析】本题考查概率的应用.熟练掌握概率公式,正确的计算是解题的关键.(1)共有9种结果,转出数字6的结果有1种,利用概率公式计算即可;(2)分别求出转出的数字小于7的概率和转出的颜色是红色的概率,进行比较即可得出结论.【详解】(1)共有9种结果,每种结果出现的可能性相同,“转出数字是6的结果有1种,∴P(转出数字6)=1÷9=1故答案为:19(2)小颖说法正确,理由:小明转动图1的转盘:转出的数字共有9种等可能的结果,其中,转出的数字小于7共有6种等可能的结果,所以小明转出的数字小于7的概率是69小亮转动图2的转盘:红色部分所在扇形的圆心角度数是360°−120°=240°,∴P(转出红色)=240∴P(转出数字小于7)=P(转出红色),∴小颖的观点是对的.【变式7-2】(23-24九年级·贵州贵阳·期末)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,主办方设了6个展馆,分别是:A国际综合馆,B东数西算馆,C数字产业馆,D产业数字馆,E创新场景馆,F数字生活馆,某校九年级某班同学计划参观其中一个展馆.(1)如图①,小红设计了一个均匀的转盘被等分成6个扇形,用字母A,B,C,D,E,F分别表示六个展馆,转动转盘,当转盘停止后,指针落在某一区域,就参观相应的展馆.若转动转盘,指针落在“E创新场景馆”区域的概率是;(2)小红希望转动转盘时,指针落在“A国际综合馆”区域的概率最大,同时又要让每个展馆都有被选中的机会,于是设计了被等分成8个扇形的如图②所示的转盘,请按小红的要求在图②的扇形中填上代表各展馆的字母,并求出指针落在“A国际综合馆”区域的概率.【答案】(1)1(2)3【分析】本题考查利用概率公式求概率,掌握概率公式是解题的关键.(1)直接利用概率公式计算即可;(2)把其中3个扇形标A即可.【详解】(1)解:∵指针落在任一区域的可能性相同,∴指针落在“E创新场景馆”区域的概率是16(2)∵每个展馆都有被选中的机会,∴先将每个展馆都填在一个区域内,又指针落在“A国际综合馆”区域的概率最大,∴剩下的两个区域都填上A即可,如图所示:指针落在“A国际综合馆”区域的概率38【变式7-3】(23-24九年级·河南平顶山·期末)某商场,为了吸引顾客,在“元旦”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:方案一:是直接获得20元的礼金卷;方案二:是得到一次播奖的机会.规则如下:已知如图是由转盘和箭头组成的两个转盘A、B,这两个转盘除了颜色不同外,其它构造完全相同,摇奖者同时转动两个转盘,指针分别指向一个区域(指针落在分割线上时重新转动转盘),根据指针指向的区域颜色(如表)决定送礼金券的多少.指针指向两红一红一蓝两蓝礼金券(元)27927(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.【答案】(1)P(2)方案一比较实惠【分析】(1)根据题意列出表格,然后根据概率公式求出结果即可;(2)先分别算出指针指在两个红色区域,两个蓝色区域的概率,算出按方案二获得礼金券的平均值,最后进行比较即可得出答案.【详解】(1)解:列表格如下:蓝蓝红蓝(蓝,蓝)(蓝,蓝)(蓝,红)红(红,蓝)(红,蓝)(红,红)红(红,蓝)(红,蓝)(红,红)∵由表格可知,共有9种等可能结果,其中转盘指针分别指向一红区和一蓝区的情况数有5种,∴两款转盘指针分别指向一红区和一蓝区的概率59(2)解:∵P两红∴如果选择方案二,获得礼金券的平均值为:59∵17<20,∴选择方案一比较实惠.【点睛】本题主要考查了列表法或画树状图法求概率,解题的关键是根据题意列出表格或画出树状图,熟练掌握概率的基本公式.【题型8概率的其它实际应用】【例8】(2024·江苏徐州·中考真题)如图,是一个竖直放置的钉板,其中,黑色圆面表示钉板上的钉子,A1,B【答案】3【分析】根据题意画出树状图,共有8种等可能的路径,其中落入③号槽内的有3种路径,再由概率公式求解即可.【详解】画树状图得:所以圆球下落过程中共有8种路径,其中落入③号槽内的有3种,所以圆球落入③号槽内的概率为38【点睛】树状图法求概率的关键在于列举出所有可能的结果,当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法.【变式8-1】(2024九年级·全国·专题练习)一次抽奖活动设置如下的翻奖牌,翻奖牌的正面、背面如下,如果你只能在9个数字中选择一个数字翻牌,请解决下面的问题:(1)直接写出翻牌得到“手机”奖品的可能性的大小;(2)请你根据题意设计翻奖牌反面的奖品,包含(手机、微波炉、球拍、电影票,谢谢参与)使得最后抽到“球拍”的可能性大小是49【答案】(1)2(2)设计九张牌中有四张写着球拍,其它的五张牌中手机、微波炉、电影票各一张,谢谢参与两张(答案不唯一)【分析】本题主要考查了随机事件的可能性,掌握可能性的计算公式是解题的关键.(1)先确定所有等可能结果数、翻到“手机”的结果数,然后运用概率公式计算即可;(2)设计一个有等可能结果数为9,翻到“球拍”的结果数为4的方案即可.【详解】(1)解:由题意可知一共有9张牌,其中“手机”有2张,则抽到“手机”奖品的可能性是:29(2)解:设计九张牌中有四张写着球拍,其它的五张牌中手机、微波炉、电影票各一张,谢谢参与两张.(答案不唯一)【变式8-2】(23-24九年级·河北廊坊·期末)甲、乙、丙三人玩捉迷藏游戏,一人为蒙眼人,捉另外两人,捉到一人,记为捉一次;被捉到的人成为新的蒙眼人,接着捉……一直这样玩(每次捉到一人).请用树状图解决下列问题,(1)若甲为开始蒙眼人,捉两次,求第二次捉到丙的概率;(2)若捉三次,要使第三次捉到甲的概率最小,应该谁为开始蒙眼人?【答案】(1)1(2)甲【分析】(1)用树状图法列举出甲为开始蒙眼人,捉两次所有可能出现的情况,进而求出捉2次,捉到丙的概率;(2)用树状图法列举出甲为开始蒙眼人,捉三次所有可能出现的情况,通过甲、乙、丙被捉到的次数得出结论.【详解】(1)解:如图1,甲为开始蒙眼人,捉两次,所有可能出现的结果如下:

共有4种可能出现的结果,其中第2次捉到丙的只有1种,所以甲为开始蒙眼人,捉两次,第二次捉到丙的概率为14(2)如图2,若甲为开始蒙眼人,捉三次,所有可能出现的结果情况如下:

共有8种可能出现的结果,其中第3次提到甲的有2种,捉到乙的有3种,捉到丙的有3种,根据所有结果出现的可能性都是相等的,所以要使第三次捉到甲的概率最小,应该甲为开始蒙眼人.【点睛】本题考查用树状图法求随机事件发生的概率.列举出所有可能出现的结果是正确解答的关键.【变式8-3】(23-24九年级·江西吉安·期末)某班为表彰期中考试进步比较快的三名学生小敏,小明和小川,班主任准备了四件奖品,现将奖品名称写在纸片上,并将纸片无字的一面朝上扣在桌面上,设奖品分别为A,A,B,B,为了提高趣味性,班主任规定,每人先后取一张纸片,若前两名同学选完后,剩下的两件是一样的奖品,则第三名同学可得到所剩两件奖品.若小敏先取一张纸片后小明取.(1)求小敏与小明均取到奖品A的概率;(2)求小川得到两件奖品的概率.【答案】(1)1(2)1【分析】(1)先根据题意画出树状图,确定所有可能数和满足题意得可能数,然后根据概率公式计算即可;(2)由题意可知:当小敏和小明都抽到奖品A或都抽到奖品B时,小川可得到所剩的两件奖品,然后再根据(1)中的树状图可知小敏和小明都抽到奖品A或都抽到奖品B的情况有4种,然后运用概率公式计算即可.【详解】(1)解:由题意,画树状图如下:由树状图可知,共有12种等可能的情况,其中小敏与小明均抽到奖品A的情况有2种,故所求概率为:212(2)解:由题意可知当小敏和小明都抽到奖品A或都抽到奖品B时,小川可得到所剩的两件奖品,由(1)中的树状图可知小敏和小明都抽到奖品A或都抽到奖品B的情况有4种.故小川得到两件奖品的概率为:412【点睛】本题主要考查了列树状图求概率、互斥事件等知识点,灵活应用所学知识成为解答本题的关键.知识点5:用频率估计概率在随机事件中,一个随机事件发生与否事先无法预测,表面上瞧似无规律可循,但当我们做大量重复试验时,这个事件发生的频率呈现出稳定性,因此做了大量试验后,可以用一个事件发生的频率作为这个事件的概率的估计值。一般地,在大量重复试验中,如果事件A发生的频率mn稳定于某一个常数P,那么事件A发生的频率P(A)=P。【题型9用频率估计概率】【例9】(23-24九年级·江西吉安·期末)某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是(

)袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球 掷一枚质地均匀的硬币,落地时结果是“正面向上”掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”【答案】C【分析】分别计算出每个事件的概率,其值约为0.16的即符合题意.【详解】A、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率为23B、掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率为12C、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2的概率为16D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为13故选:C.【点睛】本题主要考查了概率的计算和用频率估计概率,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.【变式9-1】(23-24九年级·陕西西安·期末)学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是1D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一【答案】D【分析】试验次数足够大时,频率才可以表示概率,A选项试验次数过少,所以错误;5%是每张均有%的可能中奖,而不是100张彩票一定会有5张中奖,偷换概念;概率题一定要考虑样本空间,然后确定样本,C中还有脱靶的可能,所以错误;抛掷一枚均匀硬币,结果只有两种正面朝上和正面朝下,且每次发生的可能是相等的,每做一次,正面朝上的概率都是二分之一.【详解】小智说,做3次掷图钉试验,发现2次钉尖朝上,但是试验次数少,因此不能确定钉尖朝上的概率,所以A错误;小慧说,某彩票的中奖概率是5%,那么如果买100张彩票不一定会有5张中奖,所以B错误;小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12不正确,中靶与不中靶不是等可能事件,一般情况下,还有脱靶的可能,所以C小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一,所以D正确.故选:D.【点睛】本题考查了频率和概率的区别,等可能时间概率的计算;在初中课程中认为当试验次数足够大时,频率可以表示概率;等可能事件中,n件事发生的概率都是相等的,因此每件事发生的概率是1n【变式9-2】(23-24九年级·北京石景山·期末)某林场要考察一种幼树在一定条件下的移植成活率,在移植过程中的统计结果如下表所示:移植的幼树n/棵5001000200040007000100001200015000成活的幼树m/棵42386817143456602085801030812915成活的频率m0.8460.8680.8570.8640.8600.8580.8590.861在此条件下,估计该种幼树移植成活的概率为(精确到0.01);若该林场欲使成活的幼树达到4.3万棵,则估计需要移植该种幼树万棵.【答案】0.865【分析】(1)概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.(2)利用表格中数据估算这种幼树移植成活率的概率即可.然后用样本概率估计总体概率即可确定答案.【详解】(1)概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.86.(2)由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定.当移植总数为15000时,成活率为0.861,于是可以估计树苗移植成活率为0.86,则该林业部门需要购买的树苗数量约为4.3÷0.86=5万棵.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.【变式9-3】(23-24九年级·四川成都·期末)如图是李老师制作的一个可以自由转动的转盘,如表是某同学收集的一组统计数据:转动转盘的次数1002003004005006007008009001000落在“蓝色”的次数306192118151182207242269302蓝色部分的圆心角最有可能是()A.100° B.110° C.120° D.130°【答案】B【分析】本题考查了频率估计概率,先计算概率,再计算圆心角即可.【详解】根据题意,得30÷100=0.3,61÷200=0.305,92÷300≈0.307,118÷400=0.295,151÷500=0.302,182÷600≈0.303207÷700≈0.296,242÷800≈0.303,269÷900≈0.299302÷1000=0.302中位数约为0.302+0.3032故圆心角度数约为0.3025×360°≈108.9°,故选B.【题型10概率与统计的综合】【例10】(23-24九年级·江苏苏州·期末)某校为了解学生“自主学习、合作交流”的情况,对某班部分同学进行了一段时间的跟踪调查,将调查结果(A:特别好;B:好;C:一般;D:较差)绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中,D类所占圆心角为;(3)学校想从被调查的A类(1名男生、2名女生)和D类(男、女生各占一半)中分别选取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求所选的两位同学恰好是一男一女的概率.【答案】(1)补图见解析;(2)36°;(3)12【分析】(1)由条形统计图与扇形统计图,可求得C,D的人数,继而补全统计图;(2)可求出D所占百分比,进而求得扇形统计图中,D类所占圆心角;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选的两位同学恰好是男一女的情况再利用概率公式即可求得答.【详解】解:(1)补全条形统计图:(2)36°;(3)树状图如下:所选的两位同学恰好是一男一女的概率为12【点睛】本题考点是条形统计图、扇形统计图以及用列表法与树状图法求概率,熟练掌握知识点,并会灵活运用是解题的关键.【变式10-1】(2024·四川成都·一模)成都某校为积极响应“双减”政策减负提质的要求,同时践行新时代新阅读,发挥阅读育人功能,营造书香溢满校园、阅读浸润少年的浓厚氛围,学校在今年寒假期间开展“书香满家园,阅读伴成长”读书活动.寒假结束后,学校为了解学生在家阅读时长情况,随机调查了部分学生,将调查结果绘制成如下两幅不完整的统计图表.类别时长(单位:小时)人数At>34B2<t≤320C1<t≤2D0<t≤18根据图表信息,解答下列问题:(1)本次调查的学生总人数为,扇形统计图中B类扇形所占的圆心角是°.(2)该校共有1200名学生,请你估计类别为C的学生人数;(3)本次调查中,类别为A的4人中有两名男生和两名女生,若从中随机抽取两人进行阅读交流,请利用画树状图或列表的方法,求恰好抽到两名女生的概率.【答案】(1)50人;144.(2)432人.(3)1【分析】本题主要考查列表法与树状图法、频数(率)分布表、扇形统计图、用样本估计总体等知识点,掌握列表法与树状图法以及用样本估计总体是解答本题的关键.(1)用D类的人数除以其对应的百分比即可解答;用B类所占的比例乘以3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论