天津市重点名校2025届高考仿真卷数学试卷含解析_第1页
天津市重点名校2025届高考仿真卷数学试卷含解析_第2页
天津市重点名校2025届高考仿真卷数学试卷含解析_第3页
天津市重点名校2025届高考仿真卷数学试卷含解析_第4页
天津市重点名校2025届高考仿真卷数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市重点名校2025届高考仿真卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数满足,则复数在复平面内所对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函数,其中表示不超过的最大正整数,则下列结论正确的是()A.的值域是 B.是奇函数C.是周期函数 D.是增函数3.对于任意,函数满足,且当时,函数.若,则大小关系是()A. B. C. D.4.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()A. B. C. D.5.已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为()A. B.C. D.6.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A. B. C. D.7.若数列满足且,则使的的值为()A. B. C. D.8.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为()A. B.C. D.9.在的展开式中,的系数为()A.-120 B.120 C.-15 D.1510.函数在上的大致图象是()A. B.C. D.11.复数的虚部为()A.—1 B.—3 C.1 D.212.已知全集,集合,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,且,则实数的值是__________.14.已知函数恰好有3个不同的零点,则实数的取值范围为____15.在二项式的展开式中,的系数为________.16.已知是抛物线的焦点,过作直线与相交于两点,且在第一象限,若,则直线的斜率是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:18.(12分)已知椭圆的短轴的两个端点分别为、,焦距为.(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为.证明:点在轴上.19.(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;;.)20.(12分)平面直角坐标系中,曲线:.直线经过点,且倾斜角为,以为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线的极坐标方程与直线的参数方程;(2)若直线与曲线相交于,两点,且,求实数的值.21.(12分)已知函数,直线为曲线的切线(为自然对数的底数).(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围.22.(10分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

设,则,可得,即可得到,进而找到对应的点所在象限.【详解】设,则,,,所以复数在复平面内所对应的点为,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.2、C【解析】

根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.3、A【解析】

由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.【详解】对于任意,函数满足,因为函数关于点对称,当时,是单调增函数,所以在定义域上是单调增函数.因为,所以,.故选:A.【点睛】本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题..4、B【解析】

根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以,到的距离为,同理到的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.5、C【解析】

根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代入可得,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.6、D【解析】

根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用双曲线的离心率公式求得e.【详解】直线F2A的直线方程为:y=kx,F1(0,),F2(0,),代入抛物线C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),设双曲线方程为:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴离心率e1,故选:D.【点睛】本题考查抛物线及双曲线的方程及简单性质,考查转化思想,考查计算能力,属于中档题.7、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.8、A【解析】

先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.9、C【解析】

写出展开式的通项公式,令,即,则可求系数.【详解】的展开式的通项公式为,令,即时,系数为.故选C【点睛】本题考查二项式展开的通项公式,属基础题.10、D【解析】

讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.11、B【解析】

对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.12、D【解析】

根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【详解】,,,.故选:.【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】∵=(1,2),=(x,1),则=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.点睛:由向量的数乘和坐标加减法运算求得,然后利用向量共线的坐标表示列式求解x的值.若=(a1,a2),=(b1,b2),则⊥⇔a1a2+b1b2=1,∥⇔a1b2﹣a2b1=1.14、【解析】

恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.15、60【解析】

直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.16、【解析】

作出准线,过作准线的垂线,利用抛物线的定义把抛物线点到焦点的距离转化为点到准线的距离,利用平面几何知识计算出直线的斜率.【详解】设是准线,过作于,过作于,过作于,如图,则,,∵,∴,∴,∴,,∴,∴直线斜率为.故答案为:.【点睛】本题考查抛物线的焦点弦问题,解题关键是利用抛物线的定义,把抛物线上点到焦点距离转化为该点到准线的距离,用平面几何方法求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析.【解析】

(1)由短轴长可知,设,,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【详解】解:(1)由已知,得由,两式相减,得根据已知条件有,当时,∴,即∴椭圆的标准方程为(2)当直线斜率不存在时,,不等式成立.当直线斜率存在时,设由得∴,∴由化简,得∴令,则当且仅当时取等号∴∵∴当且仅当时取等号综上,【点睛】本题为直线与椭圆的综合应用,考查了椭圆方程的求法,点差法处理多未知量问题,能够利用一元二次方程的知识转化处理复杂的计算形式,要求学生计算能力过关,为较难题18、(1);(2)见解析.【解析】

(1)由已知条件得出、的值,进而可得出的值,由此可求得椭圆的方程;(2)设点,可得,且,,求出直线的斜率,进而可求得直线与的方程,将直线直线与的方程联立,求出点的坐标,即可证得结论.【详解】(1)由题设,得,所以,即.故椭圆的方程为;(2)设,则,,.所以直线的斜率为,因为直线、的斜率的积为,所以直线的斜率为.直线的方程为,直线的方程为.联立,解得点的纵坐标为.因为点在椭圆上,所以,则,所以点在轴上.【点睛】本题考查椭圆方程的求解,同时也考查了点在定直线的证明,考查计算能力与推理能力,属于中等题.19、(1),,;(2)详见解析.【解析】

(1)根据频率分布表计算出平均数,进而计算方差,从而X~N(65,142),计算P(51<X<93)即可;(2)列出Y所有可能的取值,分布求出每个取值对应的概率,列出分布列,计算期望,进而可得需要的总金额.【详解】解:(1)由已知频数表得:,,由,则,而,所以,则X服从正态分布,所以;(2)显然,,所以所有Y的取值为15,30,45,60,,,,,所以Y的分布列为:Y15304560P所以,需要的总金额为:.【点睛】本题考查了利用频率分布表计算平均数,方差,考查了正态分布,考查了离散型随机变量的概率分布列和数学期望,主要考查数据分析能力和计算能力,属于中档题.20、(Ⅰ)(t为参数);(Ⅱ)或或.【解析】

试题分析:本题主要考查极坐标方程、参数方程与直角方程的相互转化、直线与抛物线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用,化简表达式,得到曲线的极坐标方程,由已知点和倾斜角得到直线的参数方程;第二问,直线方程与曲线方程联立,消参,解出的值.试题解析:(1)即,.(2),符合题意考点:本题主要考查:1.极坐标方程,参数方程与直角方程的相互转化;2.直线与抛物线的位置关系.21、(1);(2).【解析】

试题分析:(1)先求导,然后利用导数等于求出切点的横坐标,代入两个曲线的方程,解方程组,可求得;(2)设与交点的横坐标为,利用导数求得,从而,然后利用求得的取值范围为.试题解析:(1)对求导得.设直线与曲线切于点,则,解得,所以的值为1.(2)记函数,下面考察函数的符号,对函数求导得.当时,恒成立.当时,,从而.∴在上恒成立,故在上单调递减.,∴,又曲线在上连续不间断,所以由函数的零点存在性定理及其单调性知唯一的,使.∴;,,∴,从而,∴,由函数为增函数,且曲线在上连续不断知在,上恒成立.①当时,在上恒成立,即在上恒成立,记,则,当变化时,变化情况列表如下:

3

0

极小值

∴,故“在上恒成立”只需,即.②当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论