版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省宁乡一中高三第六次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B. C. D.2.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为()A. B. C. D.3.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B.4月份仅有三个城市居民消费价格指数超过102C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势4.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.5.为得到y=sin(2x-πA.向左平移π3个单位B.向左平移πC.向右平移π3个单位D.向右平移π6.已知命题:,,则为()A., B.,C., D.,7.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A. B. C. D.8.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立9.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为()A. B. C. D.10.已知,满足约束条件,则的最大值为A. B. C. D.11.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.2512.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若满足约束条件,则的最大值为__________.14.已知,,求____________.15.若方程有两个不等实根,则实数的取值范围是_____________.16.复数为虚数单位)的虚部为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求函数的极值;(2)当时,求证:.18.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.19.(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.(Ⅰ)证明:;(Ⅱ)设,,若为棱上一点,使得直线与平面所成角的大小为30°,求的值.20.(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.21.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围.22.(10分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若a,且a≠0,证明:函数有局部对称点;(2)若函数在定义域内有局部对称点,求实数c的取值范围;(3)若函数在R上有局部对称点,求实数m的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
求出集合,利用集合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.2、D【解析】
由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选D.【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.3、D【解析】
采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.4、D【解析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.5、D【解析】试题分析:因为,所以为得到y=sin(2x-π3)的图象,只需要将考点:三角函数的图像变换.6、C【解析】
根据全称量词命题的否定是存在量词命题,即得答案.【详解】全称量词命题的否定是存在量词命题,且命题:,,.故选:.【点睛】本题考查含有一个量词的命题的否定,属于基础题.7、A【解析】
根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.【详解】当时,,当时,,当时,,当时,,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.8、A【解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.9、C【解析】
将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐近线对称,则圆心在渐近线上,所以.所以.故选:C【点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质,还考查了运算求解的能力,属于中档题.10、D【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.11、D【解析】
由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.12、C【解析】
利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】
作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.14、【解析】
求出向量的坐标,然后利用向量数量积的坐标运算可计算出结果.【详解】,,,因此,.故答案为:.【点睛】本题考查平面向量数量积的坐标运算,考查计算能力,属于基础题.15、【解析】
由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.16、1【解析】试题分析:,即虚部为1,故填:1.考点:复数的代数运算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的极小值为,无极大值.(2)见解析.【解析】
(1)对求导,确定函数单调性,得到函数极值.(2)构造函数,证明恒成立,得到,,得证.【详解】(1)由题意知,,令,得,令,得.则在上单调递减,在上单调递增,所以的极小值为,无极大值.(2)当时,要证,即证.令,则,令,得,令,得,则在上单调递减,在上单调递增,所以当时,,所以,即.因为时,,所以当时,,所以当时,不等式成立.【点睛】本题考查了函数的单调性,极值,不等式的证明,构造函数是解题的关键.18、(1);(2)【解析】
(1)利用正弦定理,转化为,分析运算即得解;(2)由为的重心,得到,平方可得解c,由面积公式即得解.【详解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于为的重心故,∴解得或舍∴的面积为.【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.19、(Ⅰ)证明见解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因为是的中点,即得证;(Ⅱ)如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30°,列出等式,即得解.【详解】(Ⅰ)如图,连接交于点,连接,则是平面与平面的交线,因为平面,故,又因为是的中点,所以是的中点,故.(Ⅱ)由条件可知,,所以,故以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,则,,,,,,,设,则,设平面的法向量为,则,即,故取因为直线与平面所成角的大小为30°所以,即,解得,故此时.【点睛】本题考查了立体几何和空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.20、(1);(2)或.【解析】
(1)分段讨论得出函数的解析式,再分范围解不等式,可得解集;(2)先求出函数的最小值,再建立关于的不等式,可求得实数的取值范围.【详解】(1)因为,所以当时,;当时,无解;当时,;综上,不等式的解集为;(2),又,或.【点睛】本题考查分段函数,绝对值不等式的解法,以及关于函数的存在和任意的问题,属于中档题.21、(1)AB的中点的横坐标为;(2)证明见解析;(3)【解析】
设.(1)因为直线的倾斜角为,,所以直线AB的方程为,联立方程组,消去并整理,得,则,故线段AB的中点的横坐标为.(2)根据题意得点,若直线AB的斜率为0,则直线AB的方程为,A、C两点重合,显然M,B,C三点共线;若直线AB的斜率不为0,设直线AB的方程为,联立方程组,消去并整理得,则,设直线BM、CM的斜率分别为、,则,即=,即M,B,C三点共线.(3)根据题意,得直线GH的斜率存在,设该直线的方程为,设,联立方程组,消去并整理,得,由,整理得,又,所以,结合,得,当时,该直线为轴,即,此时椭圆上任意一点P都满足,此时符合题意;当时,由,得,代入椭圆C的方程,得,整理,得,再结合,得到,即,综上,得到实数的取值范围是.22、(1)见解析(2)(3)【解析】
(1)若函数有局部对称点,则,即有解,即可求证;(2)由题可得在内有解,即方程在区间上有解,则,设,利用导函数求得的范围,即可求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《必修实验大本营》课件
- 《儿歌和童话故事》课件
- 《服务式营销操作》课件
- 《离散控制系统初步》课件
- 外墙维修安全协议书
- 场景金融合同(2篇)
- 《制造工程师CAXA》课件
- 《建立资料库》课件
- 2022年云南省楚雄自治州公开招聘警务辅助人员(辅警)笔试摸底测试(3)卷含答案
- 2022年云南省迪庆自治州公开招聘警务辅助人员(辅警)笔试高频必刷题试卷含答案
- 汝城县资源型城市可持续发展研究报告样本
- 2023年12月燕山大学公开招聘35名工作人员笔试历年高频考题(难、易错点荟萃)答案带详解附后
- 三年级上册3.8《安全记心上》课件(共18张PPT)
- UPS维保方案 文档
- 产妇乏力的护理
- 职业规划中职业能力
- 肾积水教学演示课件
- 煤焦酚-安全技术说明书MSDS
- 2024年湖北省初中学业水平考试物理•化学试题
- 跨文化交流与国际视野培养
- 医院检验科院感知识
评论
0/150
提交评论