江苏海事职业技术学院《人工智能程序设计》2023-2024学年第一学期期末试卷_第1页
江苏海事职业技术学院《人工智能程序设计》2023-2024学年第一学期期末试卷_第2页
江苏海事职业技术学院《人工智能程序设计》2023-2024学年第一学期期末试卷_第3页
江苏海事职业技术学院《人工智能程序设计》2023-2024学年第一学期期末试卷_第4页
江苏海事职业技术学院《人工智能程序设计》2023-2024学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页江苏海事职业技术学院

《人工智能程序设计》2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、人工智能在自动驾驶领域有重要的应用。假设一辆自动驾驶汽车在行驶过程中需要做出决策,以下关于自动驾驶中的人工智能决策的描述,正确的是:()A.自动驾驶汽车的决策完全依赖于预先设定的规则和算法,不具备自主学习和适应能力B.复杂的交通环境和意外情况不会对自动驾驶汽车的决策造成困难,因为其具有完美的感知和预测能力C.自动驾驶汽车在决策时需要综合考虑多种因素,如交通规则、行人行为和车辆状态等D.人类驾驶员的干预对自动驾驶汽车的决策没有任何帮助,反而可能导致系统混乱2、在人工智能的文本摘要生成中,假设需要从长篇文章中提取关键信息并生成简洁准确的摘要。以下哪种方法能够更好地捕捉文章的主旨和重点?()A.基于注意力机制的模型,关注重要的文本部分B.按照文章的开头和结尾提取关键语句C.随机选择文章中的段落作为摘要D.不进行任何分析,直接输出原文的前几段3、在人工智能的研究中,可解释性是一个重要的问题。假设一个医疗决策支持系统基于人工智能模型给出诊断建议。以下关于模型可解释性的描述,哪一项是不准确的?()A.可解释性有助于医生和患者理解模型的决策依据,增加信任度B.一些复杂的深度学习模型由于其内部运作的复杂性,往往具有较低的可解释性C.为了提高模型的性能,可以牺牲一定的可解释性D.可解释性对于所有类型的人工智能应用都是同等重要的,没有优先级之分4、在人工智能的自然语言生成任务中,假设要生成一篇连贯且有逻辑的文章,以下关于模型训练的策略,哪一项是不正确的?()A.使用预训练的语言模型,并在特定任务上进行微调B.从简单的句子生成开始,逐渐过渡到复杂的文章生成C.不使用任何先验知识或语言规则,完全依靠数据驱动的学习D.引入对抗训练,提高生成文本的质量和多样性5、人工智能中的语音识别技术在许多领域都有应用,如语音助手和智能客服。假设正在改进一个语音识别系统的性能,以下关于语音识别的描述,正确的是:()A.语音识别的准确率只取决于声学模型,语言模型对其影响不大B.环境噪声对语音识别的结果没有显著影响,系统可以自动过滤噪声C.不断优化声学模型和语言模型,并结合大量的语音数据进行训练,可以提高语音识别的准确率D.语音识别系统不需要考虑不同人的口音和语速差异,能够统一处理6、在人工智能的自然语言生成任务中,预训练语言模型如GPT-3取得了显著进展。假设要使用预训练语言模型生成一篇新闻报道,以下哪个步骤是最重要的?()A.选择合适的预训练模型B.对模型进行微调C.设计输入的提示信息D.评估生成的文本质量7、自然语言处理是人工智能的重要研究方向之一,其目标是让计算机理解和生成人类语言。以下关于自然语言处理的说法,错误的是()A.词法分析、句法分析和语义理解是自然语言处理中的关键步骤B.机器翻译是自然语言处理的重要应用之一,但目前的机器翻译质量已经完全达到了人类翻译的水平C.文本分类、情感分析和信息抽取等任务都属于自然语言处理的范畴D.自然语言处理面临着词汇歧义、句法结构复杂和语义理解困难等诸多挑战8、当利用人工智能进行舆情监测和分析,及时了解公众对某一事件或话题的看法和情绪倾向,以下哪种数据来源和分析手段可能是有效的?()A.社交媒体数据和情感分析B.新闻评论数据和主题建模C.网络搜索数据和趋势预测D.以上都是9、当利用人工智能进行语音合成,使合成的语音听起来更加自然和富有情感,以下哪种方法可能是重点研究和改进的方向?()A.改进声学模型B.优化韵律模型C.提升文本分析精度D.以上都是10、在一个利用人工智能进行天气预报的系统中,为了提高预测的精度和时效性,以下哪个因素可能是需要重点关注和改进的?()A.气象数据的质量和多样性B.模型的复杂度和计算效率C.模型的融合和集成D.以上都是11、人工智能中的自动推理技术旨在让计算机自动进行逻辑推理。假设要开发一个能够自动证明数学定理的系统,以下哪个挑战是最难以克服的?()A.定理的复杂性B.推理规则的选择C.知识的表示和编码D.计算资源的需求12、假设在一个智能交通系统中,需要利用人工智能算法来优化交通信号灯的控制,以减少交通拥堵和提高道路通行效率。考虑到实时交通流量的变化和复杂的道路网络,以下哪种技术可能是核心?()A.深度学习预测交通流量B.传统的数学优化算法C.基于案例的推理D.蒙特卡罗模拟13、在人工智能的情感分析任务中,需要判断文本所表达的情感倾向,如积极、消极或中性。假设要分析社交媒体上用户对某一产品的评价情感,以下哪种方法在处理大量非结构化文本数据时效果较好?()A.基于词典的方法B.基于机器学习的分类方法C.基于深度学习的神经网络方法D.人工阅读和判断14、在人工智能的音乐创作领域,计算机可以生成音乐作品。假设我们要利用人工智能创作一首流行歌曲,以下关于人工智能音乐创作的描述,哪一项是不正确的?()A.可以模仿特定音乐风格和作曲家的特点B.能够完全替代人类音乐家的创作灵感C.需要大量的音乐数据进行训练D.生成的音乐可能缺乏情感和艺术表达15、在人工智能的图像增强技术中,目的是提高图像的质量和可读性。假设我们要对一张低光照条件下拍摄的照片进行增强,以下关于图像增强的方法,哪一项是不准确的?()A.直方图均衡化B.锐化滤波C.中值滤波D.图像增强不会引入任何噪声16、在人工智能的自动驾驶领域,车辆需要根据周围环境的感知信息做出决策,如加速、减速、转弯等。假设车辆面临复杂的交通场景,包括多个车辆、行人、交通信号灯等,为了确保安全和高效的驾驶决策,以下哪种技术或方法是至关重要的?()A.基于规则的决策制定,遵循固定的交通规则B.深度学习模型,自动从大量数据中学习决策模式C.随机决策,根据概率选择行动D.不考虑其他车辆和行人,只关注自身车辆的状态17、在人工智能的模型训练中,超参数的调整是一个关键步骤。假设正在训练一个用于文本生成的循环神经网络(RNN),以下关于超参数选择的方法,哪一项是不太可取的?()A.基于经验和直觉,随机选择一组超参数进行试验B.使用网格搜索或随机搜索等方法,系统地尝试不同的超参数组合C.借鉴已有的相关研究和实践中常用的超参数设置D.利用自动超参数调整工具,如Hyperopt,根据验证集的性能自动寻找最优超参数18、人工智能在物流领域的应用能够提高物流效率和服务质量。以下关于人工智能在物流应用的叙述,不正确的是()A.可以通过路径规划算法优化货物运输路线,降低运输成本B.利用图像识别技术实现货物的自动分拣和识别C.人工智能在物流领域的应用面临数据安全和隐私保护等挑战D.物流领域对人工智能技术的需求不高,传统的管理方法已经足够满足需求19、人工智能中的深度学习模型通常需要大量的训练数据。假设要训练一个用于图像分类的卷积神经网络(CNN),但可用的标注数据有限。以下哪种方法可能有助于提高模型的性能?()A.使用数据增强技术,如翻转、旋转、缩放图像,增加数据的多样性B.减少模型的层数和参数数量,以降低对数据的需求C.直接使用未标注的数据进行训练D.放弃深度学习模型,选择传统的机器学习算法20、人工智能中的元学习技术旨在让模型能够快速适应新的任务和数据分布。假设要开发一个能够在不同领域的小样本学习任务中表现良好的元学习模型,以下哪种元学习方法在泛化能力和学习效率方面具有更大的潜力?()A.基于模型的元学习B.基于优化的元学习C.基于度量的元学习D.以上方法结合使用21、在人工智能的药物研发中,机器学习可以辅助药物分子的设计和筛选。假设要开发一种治疗特定疾病的新药,以下哪种机器学习方法可能最有助于找到潜在的有效分子结构?()A.分类算法B.回归分析C.聚类分析D.强化学习22、人工智能中的计算机视觉技术能够让计算机理解和分析图像和视频内容。假设要开发一个能够实时监测交通流量和识别车辆类型的系统,需要在不同的天气和光照条件下准确地检测和分类车辆。以下哪种计算机视觉技术或方法在这种复杂场景下具有更好的鲁棒性和准确性?()A.传统的图像处理方法B.基于特征提取的方法C.深度学习中的目标检测算法D.光流法23、随着人工智能技术的发展,伦理和社会问题也日益受到关注。假设一个人工智能系统在招聘过程中根据候选人的数据分析做出决策,可能会导致潜在的歧视和不公平。为了避免这种情况,以下哪种措施最为关键?()A.对数据进行匿名化处理B.建立透明的算法和决策机制C.限制人工智能在招聘中的应用D.不使用敏感数据进行分析24、在人工智能的机器翻译任务中,为了提高翻译的质量和准确性,尤其是对于具有特定领域知识的文本,以下哪种策略可能是有效的?()A.使用大规模通用语料库B.引入领域特定的词典和知识C.优化神经网络架构D.以上都是25、在人工智能的语音识别任务中,噪声环境会对识别准确率产生显著影响。假设要提高在嘈杂环境下的语音识别性能,以下哪种方法可能最有效?()A.增加训练数据中的噪声样本B.使用更复杂的声学模型C.优化语音信号的预处理D.提高麦克风的质量26、在人工智能的发展中,模型压缩和优化技术有助于在资源受限的设备上部署模型。假设要将一个大型的人工智能模型部署到移动设备上,以下关于模型压缩和优化的描述,哪一项是不正确的?()A.可以采用剪枝、量化等方法减少模型的参数数量和计算量B.模型压缩可能会导致一定程度的性能损失,但可以通过优化算法来弥补C.模型压缩和优化只适用于深度学习模型,对传统机器学习模型无效D.需要在模型性能和资源消耗之间进行平衡,找到最优的解决方案27、强化学习是另一种机器学习方法,通过与环境进行交互并根据奖励信号来学习最优策略。以下关于强化学习的叙述,不准确的是()A.强化学习中的智能体通过不断尝试不同的动作来获取最大的累积奖励B.强化学习适用于解决序列决策问题,如机器人控制和游戏策略制定C.强化学习不需要对环境有先验的了解,完全通过与环境的交互来学习D.强化学习的训练过程简单快速,通常能够在短时间内得到最优的策略28、强化学习是人工智能中的一个重要领域,常用于训练智能体在环境中做出最优决策。假设一个机器人需要在一个充满障碍物的房间里找到通往目标位置的路径,同时避免碰撞。在这种情况下,以下关于强化学习的说法,哪一项是正确的?()A.智能体通过随机尝试不同的动作来学习最优策略B.奖励函数的设计对学习效果没有太大影响C.强化学习不需要考虑环境的动态变化D.一旦训练完成,智能体在新的环境中无需重新学习就能表现良好29、在人工智能的文本生成任务中,除了生成连贯的文字内容,还需要考虑语言的逻辑性和合理性。假设我们要生成一篇新闻报道,以下关于文本生成的说法,哪一项是正确的?()A.可以完全依靠随机生成来创造新颖的内容B.语言模型的规模越大,生成的质量一定越高C.预训练语言模型结合微调可以提高生成效果D.不需要考虑语法和语义的约束30、人工智能中的迁移学习是一种有效的技术。假设要将一个在大规模数据集上训练好的图像分类模型应用到一个特定的小数据集上,以下关于迁移学习的描述,正确的是:()A.可以直接将原模型在新数据集上进行微调,快速获得较好的性能B.由于数据集差异较大,原模型无法在新数据集上使用,需要重新训练C.迁移学习只能在相同领域的任务之间进行,不同领域无法应用D.迁移学习会导致模型过拟合新数据集,降低泛化能力二、操作题(本大题共5个小题,共25分)1、(本题5分)利用Python中的Scikit-learn库,实现高斯混合模型(GMM)对数据进行聚类,通过调整模型参数优化聚类效果。2、(本题5分)利用Scikit-learn中的层次聚类算法,对基因表达数据进行聚类分析。研究基因之间的相似性和功能分组。3、(本题5分)利用Python的OpenCV库,实现对视频中的车辆检测和车型分类。通过车辆特征提取和机器学习算法,准确检测和分类车辆。4、(本题5分)利用Python中的Keras库,搭建一个基于强化学习的能源管理模型,优化能源消耗和分配。5、(本题5分)利用Scikit-learn中的随机森林算法,对客户的购买行为数据进行预测,判断客户是否会购买某一产

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论