版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东滕州实验高中2025届高三二诊模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正项等比数列中,存在两项,使得,,则的最小值是()A. B. C. D.2.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.3.在中,,,,则在方向上的投影是()A.4 B.3 C.-4 D.-34.设等差数列的前项和为,若,则()A.23 B.25 C.28 D.295.下列命题为真命题的个数是()(其中,为无理数)①;②;③.A.0 B.1 C.2 D.36.正项等比数列中,,且与的等差中项为4,则的公比是()A.1 B.2 C. D.7.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q8.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.9.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是()A. B. C. D.10.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.11.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.12.函数的图像大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为__________.14.在长方体中,,,,为的中点,则点到平面的距离是______.15.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______.16.在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的三张,则抽取的三张卡片编号之和是偶数的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.18.(12分)已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.19.(12分)设数列是等差数列,其前项和为,且,.(1)求数列的通项公式;(2)证明:.20.(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,,求的通项公式;(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;21.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.22.(10分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:AQI空气质量优良轻度污染中度污染重度污染重度污染天数61418272510(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【详解】,,或(舍).,,.当,时;当,时;当,时,,所以最小值为.故选:C.【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.2、C【解析】
显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.3、D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,,,又,,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.4、D【解析】
由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.5、C【解析】
对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.【详解】由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的;对于②中,设函数,则,所以函数为单调递增函数,因为,则又由,所以,即,所以②不正确;对于③中,设函数,则,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得最大值,最大值为,所以,即,即,所以是正确的.故选:C.【点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.6、D【解析】
设等比数列的公比为q,,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q.【详解】由题意,正项等比数列中,,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D.【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.7、C【解析】
解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C8、D【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.9、B【解析】
先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】不超过的素数有:、、、、、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况,因此,所求事件的概率为.故选:B.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.10、A【解析】
因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,,,,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.11、B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.12、A【解析】
根据排除,,利用极限思想进行排除即可.【详解】解:函数的定义域为,恒成立,排除,,当时,,当,,排除,故选:.【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.【详解】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,,,,,,.故答案为:.【点睛】本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.14、【解析】
利用等体积法求解点到平面的距离【详解】由题在长方体中,,,所以,所以,设点到平面的距离为,解得故答案为:【点睛】此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.15、【解析】
分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可.【详解】首先,第一行队伍的排法有种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有种;第二行的每个位置的人员安排有种;第三行的每个位置的人员安排有种.所以来自同一队的战士既不在同一行,也不在同一列的概率.故答案为:.【点睛】本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.16、【解析】
先求出所有的基本事件个数,再求出“抽取的三张卡片编号之和是偶数”这一事件包含的基本事件个数,利用古典概型的概率计算公式即可算出结果.【详解】一次随机抽取其中的三张,所有基本事件为:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10个,其中“抽取的三张卡片编号之和是偶数”包含6个基本事件,因此“抽取的三张卡片编号之和是偶数”的概率为:.故答案为:.【点睛】本题考查了古典概型及其概率计算公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,40元(2)6000元【解析】
(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可(2)根据(1)结果求均值.【详解】解:(1)由题设知可能取值为0,20,40,60,80,则;;;;.故的分布列为:020406080所以数学期望(元)(2)此次促销活动后健身馆每天的营业额预计为:(元)【点睛】考查离散型随机变量的分布列及其期望的求法,中档题.18、(1);(2)极小值为,递减区间为:,递增区间为.【解析】
(1)由题意得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的单调区间和极小值.【详解】(1)由题意,函数,则,由当时,有极大值,则,解得.(2)由(1)可得函数的解析式为,则,令,即,解得,令,即,解得或,所以函数的单调减区间为,递增区间为,当时,函数取得极小值,极小值为.当时,有极大值3.【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的单调区间和极值,其中解答中熟记函数的极值的概念,以及函数的导数与原函数的关系,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)(2)见解析【解析】
(1)设数列的公差为,由,得到,再结合题干所给数据得到公差,即可求得数列的通项公式;(2)由(1)可得,再利用放缩法证明不等式即可;【详解】解:(1)设数列的公差为,∵,∴,∴,∴.(2)∵,∴,∴.【点睛】本题考查等差数列的通项公式的计算,放缩法证明数列不等式,属于中档题.20、(1)(2)当n为偶数时,;当n为奇数时,.(3)【解析】
(1)根据,讨论与两种情况,即可求得数列的通项公式;(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时的通项公式.也可利用数学归纳法,先猜想出通项公式,再用数学归纳法证明.(3)分类讨论,当n为奇数或偶数时,分别求得的最大值,即可求得的取值范围.【详解】(1)由题意可知,.当时,,当时,也满足上式.所以.(2)解法一:由(1)可知,即.当时,,①当时,,所以,②当时,,③当时,,所以,④……当时,n为偶数当时,n为偶数所以以上个式子相加,得.又,所以当n为偶数时,.同理,当n为奇数时,,所以,当n为奇数时,.解法二:猜测:当n为奇数时,.猜测:当n为偶数时,.以下用数学归纳法证明:,命题成立;假设当时,命题成立;当n为奇数时,,当时,n为偶数,由得故,时,命题也成立.综上可知,当n为奇数时同理,当n为偶数时,命题仍成立.(3)由(2)可知.①当n为偶数时,,所以随n的增大而减小从而当n为偶数时,的最大值是.②当n为奇数时,,所以随n的增大而增大,且.综上,的最大值是1.因此,若对于任意的,不等式恒成立,只需,故实数的取值范围是.【点睛】本题考查了累加法求数列通项公式的应用,分类讨论奇偶项的通项公式及求和方法,数学归纳法证明数列的应用,数列的单调性及参数的取值范围,属于难题.21、(1),(2)【解析】分析:(1)根据题的条件,得到对应的椭圆的上顶点,即可以求得椭圆中相应的参数,结合椭圆的离心率的大小,求得相应的参数,从而求得椭圆的方程;(2)设出一条直线的方程,与椭圆的方程联立,消元,利用求根公式求得对应点的坐标,进一步求得向量的坐标,将S表示为关于k的函数关系,从眼角函数的角度去求最值,从而求得结果.详解:(Ⅰ)依题意得对:,,得:;同理:.(Ⅱ)设直线的斜率分别为,则MA:,与椭圆方程联立得:,得,得,,所以同理可得.所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《豆粕市场短期震荡》课件
- 合肥学校攀岩墙施工方案
- 初二美术教学工作计划范文美术工作计划
- 老伙伴计划岗位职责
- 2024区健康教育工作计划
- 科技计划科技报告编写模板
- 怎样做商业计划书
- 2024冰激凌店创业计划书
- 2024六年级班主任工作计划第一学期
- 行政后勤年度工作计划学校后勤年度工作计划
- 四年级公共安全教育全册教案(海峡教育出版社)
- 新部编人教版四年级下册道德与法治全册教案(教学设计)
- 澳门回归国旗下主题讲话范文
- 电子课件《英语(第一册)(第三版)》A013820英语第一册第三版Unit4
- 健康饮食有机蔬菜宣传画册模板课件
- 请求页式存储管理中常用页面置换算法模拟
- 织物组织分析—双层接结组织
- 20000m3储罐施工方案
- 靶向药物治疗与护理ppt课件
- 商业发票INVOICE模板
- 铝表面阳极氧化处理方法及缺陷分析
评论
0/150
提交评论