统计学教案-时间数列_第1页
统计学教案-时间数列_第2页
统计学教案-时间数列_第3页
统计学教案-时间数列_第4页
统计学教案-时间数列_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章时间数列通过本章学习掌握时间列数的概念、种类、编制;时间列数的构成分析【教学重点、难点】重点:时间数列的编制,动态发展水平与速度,动态趋势分析与预测等;难点:动态水平指标和速度指标的计算,各指标之间的关系和应用条件。【教学用具】多媒体【教学过程】第一节时间数列的概念和种类一、时间数列的概念和作用时间数列就是将反映社会经济现象数量特征的统计指标值按时间的先后顺序排列所形成的数列,又称动态数列。时间数列由两个基本要素组成:现象所属时间(t)和各个时间所对应的统计指标值(Y)。即时间数列由两个互相对应的两个数列构成:时间顺序变化数列和统计指标变化数列。编制时间数列的主要目的是用于开展时间数列分析:了解现象过去的活动过程,评价当前的状况和对未来的决策,因而是统计的重要方法之一。(一)通过编制动态数列,可以反映社会经济现象的发展变化及历史状况,还可以根据动态数列计算各种时间动态指标数值,以便具体深入地揭示现象发展变化的数量特征。(二)通过动态数列,可以揭示社会经济现象的数量变化趋势,以便进一步研究确定这种趋势和波动是否有规律性的反映。当有季度或月份资料的动态数列时,可以确定是否存在季节变动和季节变动的数量表现。(三)通过动态数列,可以对某些社会经济现象进行动态趋势预测,是统计预测方法的一个重要内容。(四)利用不同的动态数列进行对比,或不同国家(或地区)间的相同动态数列对比是对社会经济现象进行统计分析的重要方法之一。二、时间数列的种类时间数列按其指标性质不同,可以分为绝对数时间数列、相对数时间数列和平均数时间数列三大类。其中绝对数时间数列又称之为总量指标时间数列,是基本数列,其余两种是派生数列。.总量指标时间数列是由总量指标按时间的顺序排列而成的数列。如表5-1。总量指标时间数列按指标所反映的时间状况不同又可分为时期数列和时点数列。时期数列是时期时间数列的简称,其数列指标是反映现象在一段时间数列内发展过程的总量,如:总产量、总产值等。时期数列有以下几个特点:(1)数列中各个时期的指标数值可以相加。(2)数列中每一个指标数值的大小与其所包括的时期和长短有直接关系。(3)时期数列具有连续统计的特点。时点数列有如下几个特点:(1)数列中每个指标数值是不能相加的。(2)数列中每个指标数值的大小与其时间隔长短没有直接联系。(3)时点数列指标值不具有连续统计的特点。.相对指标时间数列数列和平均指标时间数列数列,是分别由相对指标和平均指标按时间数列顺序排列而形成的数列。由于相对指标和平均指标是由两个总量指标派生而来的,总量指标有时期指标和时点指标,从而相应构成不同的时间数列数列。在相对数列动态数列中,各个指标数值是不能相加的。.平均数动态数列中各个指标值也是不能相加的。因为各平均数相加后是毫无意义。三、时间数列数列的编制原则编制时间数列的目的,是通过各个时期指标值的对比,来研究社会经济现象的发展变化及其规律性。因而各时期指标值的可比性乃是编制时间数列数列的基本条件。其可比性具体如下:(一)时间长短统一。不论时期数列还是时点数列都应尽量保持时间数列的时间的可比性,包括时期数列的时期跨度和时点数列的时点间隔的一致性。否则就很难从数列的指标数值变化上直接作出判断和比较或更准确地反映现象的发展趋势和变化规律。但这个原则不能绝对化,有时在特殊的研究目的下,可将时期不同的指标编成为动态数列进行比较。例如,为反映我国钢产量的发展情况,可以把“六五”、“七五”计划时期的钢产量同第一个五年计划和解放前旧中国几十年的钢产量总和进行对比分析。(二)总体范围统一。在同一时间数列中总体范围前后应该一致,若有变化,指标数值就不能直接对比,而必须经过调整后才能进行比较。(三)计算方法、价格和计量单位的统一。计算方法有时也可以叫做计算口径。例如要研究企业劳动生产率的变动,产量指标是用实物量指标还是用价值量指标,人数指标是用全部职工人数还是用生产工人数,若进行动态对比,前后应一致。再如,要把不同时期的工业产值进行对比,就要注意到价格水平的变动,是采用不变价,还是用现行价格,在前后时期对比时,价格应一致。(四)指标的经济含义统一。即使经济指标的名称是相同的,其所包含的经济含义有可能是不一样。在实际工作中应注意不同历史时期、不同国家或地区的同一指标的经济内容的一致性。如农业总产值指标,在1984年前包含村办工业产值,而在1984年以后则不包含这一部分内容。这样1984年后的农业总产值的内容就不尽相同,在进行动态分析时要注意这一点,对指标适当调整后,才可对比。第二节 时间数列水平指标在编制时间数列的基础上,为了反映社会经济现象在不同时间条件下的发展变化、研究事物的发展变化规律,需要进行各种动态分析,其中基础的方法就是通过对比分析计算各种动态分析指标,来反映社会经济现象在不同时间条件下的发展变化。常见的动态分析指标有:水平分析指标:发展水平、平均发展水平、增长量、平均增长量;度分析指标:发展速度、平均发展速度、增长速度、每增长1%的绝对值、平均增长速度。一、时间数列的水平指标(一)发展水平发展水平是时间数列中具体时间条件下的指标数值,又称时间数列水平。是计算其他动态分析指标的基础,多用叫表示。(二)平均发展水平平均发展水平又称之为序时平均数,它是将整个时间数列作为一个整体,反映这个整体的一般水平。序时平均数与一般的算术平均数虽然都是通过具体数值计算,反映整体的一般水平,但两者也存在着明显的差异,主要表现在:.序时平均数平均的是事物在不同时间上的数量差异;算术平均数平均的是总体各单位某一数量标志在同一时间上的数量差异。.序时平均数是从动态上说明某一事物在不同时间上发展的一般水平;算术平均数是从静态上说明同一事物总体不同单位在同一时间上的一般水平。.序时平均数是根据时间数列计算的;算术平均数是根据变量数列计算的。序时平均数的计算,由于不同时间数列具有不同特点需要用不同的方法,现分别讨论如下:(1)根据绝对数时间数列计算序时平均数。由前述可知,在绝对数时间数列中主要是由总量指标所构成的时间数列,而总量指标根据其时间状况不同又可分为时期指标与时点指标,并分别构成时期数列与时点数列。时期数列与时点数列各自所具有的不同特点,使得在平均指标的计算上具有明显的差异。①由时期数列计算序时平均数。由于时期数列中的各项指标数值都是反映社会经济现象在一定时期内的过程总量,具有可加性,因此我们可以采用简单算术平均的方法计算序时平均数,即将时期数列中研究范围内的各项指标数值之和除以时期项数来得到。计算公式为:n②时点数列序时平均数。要精确计算时点数列序时平均数就应该有每一瞬间都登记的资料。这在实际中几乎是不可能的,所以习惯上以天为单位作为瞬间即一时点。即使这样也较繁杂。通常的作法有两种:一是每隔一段时间登记一次,时点定在月(季、年)初或末,每次登记的间隔相等;二是只当现象的数量发生变化时登记,每次登记的间隔不等。两种情况下计算序时平均数的方法有所不同:“首尾折半法”一一用于间隔相等的时点数列:1_a+a+ +a+_a01 n-12na- N-1“两两平均法”一一用于间隔不等的时点数列:a+aa+aa+a01+_12++n—1n_a—2 2a-n(2)由相对指标或平均指标计算序时平均数。相对指标或平均指标时间数列是由互相联系的两个总量指标时间数列加以计算的在相对指标或平均指标背后掩藏着与之相适应的绝对娄我们不能象总量指标时间数列那样直接计算序时平均数。只能按照数列的性质,分别计算分子、

分母两个基本点总量指标时间数列的序时平均数,然后加以对比。所以,总量指标时间数列的序时平均数是基本方法,从相对指标或平均指标时间数列计算序时平均数,也应以此为基础。其算式一般写为:CTC~= 5式中“二”左边代表相对指标或平均指标的序时平均数,右边分子、分母分别代表子项和母项总量指标的序时平均数。在这里a、b作为总量指标时间数列(时点或时期)有三种可能:①a、b均为时期数列。②a、b均为时点数列。③a、b一个为时点数列一个为时期数列。(三)增长量增长量就是报告期水平与基期水平之差,用公式表示为:增长量二报告期水平一基期水平二也外在增长量的计算中,由于报告期水平可以大于基期水平,也可以等于或小于基期水平,所以增长量可以是正值,也可以是零或负值,它们分别表示正增长、零增长或负增长。由于基期的确定方法不同,增长量可分为逐期增长量与累计增长量。逐期增长量是报告期水平减去基期水平说明现象逐期增长的数量;累计增长量或累积增长量则是报告期水平与某一固定期水平(通常为a0)的差额,说明事物某一时期内的总增长量:逐期增长量二a「ao,a2-a1, ,an-ani累计增长量二21川0/2T0, ,an-a0我们不难得出如下结论:①累计增量等于逐期增量之和,即:(ara0)+(a2-ap+ +(an-ani)=an-aQ②相邻两期累计增长量之差等于相应的逐期增量在实际统计分析工作中,为了消除季节变动的影响,增加可比性,常计算本期发展水平与上年同期水平的增减数量,称为年距增长量。四、平均增长量平均增长量是增长量的序时平均数,说明现象在一定时期内平均每期增长的数量,较常用的方法有两种:一是水平法,它是将各个逐期增长量相加之后除以逐期增长量的个数,或累计增量除以时间数列项数减1,用公式表示为:水平法:平均增长量二逐期增长量之和除以逐期增长量个数总和法:要求用平均增长量A推算的各期理论水平之和等于各期实际水平之和第三节时间数列速度指标一、发展速度发展速度是指某种社会经济现象报告期水平与基期水平之比。反映某种现象的发展方向和程度。其计算公式为:发展速度二报告期水平

发展速度二报告期水平

基期水平发展速度通常以百分数表示,发展速度大于100%表示上升,小于100%表示下降。当发展速度很大时也可以以倍数表示,比如我们常说的“翻两番”就是以倍数关系表示的。由于对比基期的不同,发展速度又可分为定基发展速度和环比发展速度。定基发展速度是动态数列中各报告期水平与某一固定基期水平(固定基期一般是最初水平@,有时可以是某一特殊水平)之比,反映现象在一个较长时期内的发展变动程度。0因此,定基发展速度又称为总发展速度。其计算公式为:定基发展速度=报告期水平

定基发展速度=报告期水平

固定基期水平用符号表示为:a-a-na0aaa000例如表5-10某企业商品零售总额的定基发展速度,就是由2000-2004年各期发展水平分别与1999年的发展水平对比而得的。环比发展速度是动态数列中报告期水平与前一期水平之比。反映现象逐期发展变动的程度。如果计算的单位时间为一年,这个指标也可叫做年速度。其计算公式为:环比发展速度二报告期水平前一期水平用符号表示为:a―,,aa―,,a0a-^2,a1a,a2a, nan-1上述两种发展速度之间存在着一定的数量关系:第一、定基发展速度等于各相应时期环比发展速度的连乘积,即a nan-1Or=匕Xa nan-1aaaa00 1 2第二,两个相邻时期的定基发展速度之比等于相应时期的环比发展速度,即a/aaa-i:-i-1——La/aa0- 0i-1为了消除季节因素对社会经济现象发展变化的影响,在计算月份或季度发展速度时,可选用上年同期作为对比的基期,计算年距发展速度。此外,还可以选用历史最高水平的时间作为对比的基期,以反映在报告期超过或不及历史最高水平的程度。见表5-10。二、增长速度增长速度又称为增减速度,是报告期增长量与基期发展水平之比。它是表明社会经济现象增长程度的相对指标。其计算公式为:

增长速度=增长量=报告期水平-基期发展水平

日又基期水平 基期水平=发展速度-1增长速度通常用百分数表示。当发展速度大于100%时,增长速度为正值,表示现象增加的程度;当发展速度小于100%时,增长速度为负值,表示现象减少的程度。增长速度由于采用基期不同,也分为定基增长速度和环比增长速度。定基增长速度是报告期的累计增长量与某一固定基期(通常为最初水平)之比,表明某种现象在一段时期内总的增长速度。其计算公式为:定基增长速度=累计增长量定基增长速度=累计增长量某一固定基期水平报告期水平-某一固定基期水平

某一固定基期水平=定基发展速度-1用符号表示为:a一a o,a0a一aa一a•••■, ,a—a2 0,a03 0a0na00或a1,aT1,a-1,…a,-n-1aaaa0000见表5-10资料。环比增长速度是指逐期增长量与前一期水平之比,表明某种现象逐期的增长速度。其计算公式为:环比增长速度二逐期增长量前一期水平=报告期水平-前一期水平= 前一期水平=环比发展速度-1用符号表示为:a—a—t 0,a0a—aa—a•••a—a2 1a13 2,a2, n n—1an—1或a1,ar1,a-1,a•••一, n-Laaaa012n—1见表5-10资料。值得注意的是,定基增长速度和环比增长速度之间没有量的直接乘除关系,

就是说,环比增长速度的连乘积不等于定基增长速度。如需推算,必须将增长速度转化为发展速度,利用发展速度的关系互相推算,再转化为增长速度。为了把速度指标、水平指标结合起来,深入分析环比增长速度与逐期增长量之间的关系,进一步反映增长速度的实际效果,有必要计算环比增长速度每增加一个百分点所代表的绝对量,通常称为增长1%的绝对量。其计算公式为:增长1%的绝对量增长1%的绝对量=逐期增长量

环比增长速度X100前一期水平100例如上年的销售额为1030万元,今年要增加5%,今年的销售额目标是1081.5万元,所对应的增长1%绝对量就是10.3万元。请思考:下面是上海市2003年上半年外贸进出口情况,请指出各指标属于动态数列分析中的那项指标?2003年1-6月上海市外贸进出口总额为496.95亿美元,比去年同期增长57.2%。其中出口额218.39亿美元,增长62.8%。三、平均发展速度与平均增长速度社会经济现象在不同时期的发展速度是不同的,为了说明社会经济现象在一段较长时期内发展变化的一般程度,必须将现象在这个时期内的发展速度差异加以抽象,计算平均速度指标。平均速度指标有平均发展速度和平均增长速度两种。平均发展速度是某种社会经济现象各环比发展速度的序时平均数,说明在发展期内平均发展变化的程度。平均增长速度又称平均增减速度,说明现象在较长时期内平均每期增长或降低的速度,是根据它与平均发展速度的关系推算出来的。其计算公式为:平均增长速度=平均发展速度-1(或100%)平均发展速度的计算方法有两种,一是水平法(或称几何平均法),另一种是累计法。(一)、水平法由于社会经济现象发展的总速度不等于各年发展速度之和,而等于各年环比发展速度的连乘积,所以平均发展速度不能用算术平均法计算,而要用几何平均法计算,这种方法称为水平法。其计算公式为:x=nx・x・x…x=nnx12 3n式中,x代表平均发展速度,x代表各期环比发展速度,n全代表环比发展速度的项数,n代表连乘符号。由于动态数列中定基发展速度等于各环比发展速度的连乘积,所以,计算平均发展速度的公式又可以表示为:

--aaa—'aX'fXTXX-n- nnaa a\a01 n-1 0一段时期的定基发展速度即为现象的总速度。如果用R表示总速度,则平均发展速度的公式还可以表示为:x=nR以上计算平均发展速度的三个公式,虽然形式不同,但其实质内容与计算结果完全相同。计算平均发展速度,究竟采用哪个公式,主要取决于所掌握的资料。利用几何平均法求现象的平均发展速度,可以借助对数计算,也可以直接用多功能电子计算器计算。现以表5.10中的资料,将平均发展速度的几种算法分别举例如下:例:已知某企业商品零售总额2000-2004年各年的环比发展速度分别为:115.3%,118.7%,120.4%,128.6%,134.3%;求年平均发展速度。x=<nx=5n5.3%X118.7%X120.4%x128.6%x134.3%=123.2%例:如果已知该企业消费品零售额1999年为7250.3亿元,2004年为20620.0亿元,求年平均发展速度。x20620.07250.3=123.2%x20620.07250.3=123.2%例:如果已知我国社会消费品零售额1990-1995年的总发展速度是284.4%,求年平均发展速度。X=nR=5284.4%=123.2%计算结果表明,用以上三种公式对同一现象计算平均发展速度,其计算结果相同(有时出现小数不一致的情况,属计算过程中四舍五入情况造成的误差)。但是这种方法不能准确反映中间水平的起伏状况。从理论上讲,用水平法计算的平均发展速度,是对一定发展阶段各期环比发展速度的平均,受各个时期发展水平的影响;但从计算公式中观察,它只突出了最初水平和最末水平的影响,不能全面反映现象在整个发展阶段各期发展快慢的差别。因此,在运用这一指标时,应注意最初水平与最末水平是否受特殊因素影响;同时,要联系各期环比发展速度加以分析,必要时用分段平均发展速度补充总平均发展速度,以对现象的发展作出更加全面、客观、科学地评价。(二)、累计法累计法是以各期发展水平的总和与某一基期水平之比为基础,利用一元高次方程计算平均发展速度的方法。计算公式为:-2+X72= Lao解出这个高次方程的正根,就是所求的平均发展速度。在实际中,计算比较麻烦,一般根据事先编好的《平均发展速度表》来计算。请思考:为什么说高水平难以高速度,低水平却可以高速度呢?为什么中国国内生产总值可以以每年大于7%的速度增长,美国国民生产总值每年增长不到4%,而美国仍然发展很快呢?第四节时间数列的构成分析时间数列的构成可以分成四类:长期趋势、循环变动、季节变动和不规则变动。把这些变动与时间数列的关系用一定的数学关系式表示,就构成了时间数列的分解模型。其种类有很多,其中加法模型和乘法模型是最基本的。力口法模型Y=T+C+S+I乘法模型丫二T义CXSXI式中Y表示时间数列(总变动),T表示长期趋势,C表示循环变动,S表示季节变动,I表示不规则变动。一、长期趋势测定长期趋势是指现象在较长时期内持续发展变化的方向和状态。研究长期趋势,对正确认识事物发展变化的数量规律有中要意义。长期趋势是现象在一段较长的时间内,由于普遍的、持续的、决定性的基本因素的作用,使发展水平沿着一个方向,逐渐向上或向下变动的趋势。在一个长时期的动态数列中,影响数列中指标数值升降变动的因素是多方面的,除了长期趋势外,另有一些因素短期起作用,造成短期的波动,还有一些偶然性因素,造成不规则的偶然变动,在按月或按季资料中,有不少现象还存在季节变动。在一个动态数列中,这几种变动往往是互相交织在一起的。现象变动的长期趋势就体现在这种多因素相互交织作用所形成的波动中,只有把波动修匀之后,才能体现出趋势的状态和走向。长期趋势的测定,就是用一定的方法对动态数列进行修匀,使修匀后的数列排除季节变动,偶然变动等因素的影响,显示出现象变动的基本趋势,作为预测的依据。(一)移动平均法移动平均法是通过对原有的时间数列进行修匀,以测定长期趋势的一种比较简单的方法。即对时间数列采用逐项移动的办法按一定时期分别计算一系列序时平均数,形成一个派生的时间数列。所谓移动平均,就是从动态数列的第一位数值开始,按一定项数求序时平均数,逐项移动,边移动边平均。这样就可以得到一个由移动平均数构成的新的动态数列,这个派生的新动态数列把原数列中的某些不规则变动加以修匀,变动更平滑,趋势倾向更明显,可以更深刻地描述现象发展的基本趋势。移动平均项数的确定是一个重要问题,因为移动项数多少直接影响修匀的程度。一般说来,移动项数越多,修匀的作用就越大,而所得出的移动平均数的项数也就越少;反之,移动项数越少,修匀的作用就越小,所得出的移动平均数的项数也就越多。移动项数的确定应注意动态数列水平波动的周期性。一般要求移动项数与周期变动的时距相吻合,或为它的整倍数。比如,对于具有季度或月份水平资料的时期数列,经受每年季节性的涨落,主要必须清除季节变动因素,以运用4项或8项移动平均为宜。在以年为单位的数据所形成的动态数列中,所要清除的是循环变动和不规则变动因素,这时,可借助于动态数列水平的观察,看一看循环周期大体是几年,就相应采用几年移动平均。而且宜用奇数项较简便,每次移动平均值应对准所平均时期的正中间,奇数项平均数正好对着中间时期,一次平均即可,偶数项移动平均因为中点错了半期,需要再作一次两项移动平均才能正过来。可见,偶数项移动平均,计算较繁,故一般多用奇数移动平均。采用移动平均法测定事物发展的长期趋势,其优点是简单易行,便于操作,同时它的局限性亦很明显。(二)最小二乘法最小二乘法是测定长期趋势的常用方法,又称数学模型法。是利用趋势方程来描绘数列长期趋势进而进行未来预测的一种统计方法。丫3+btY。时间数列的趋势值a、b直线趋势方程的截距、斜率t时间标号据£导兀)2十个值,利用微分求极值原理,可得到n乙ty一乙(乙yb=T——n乙t2-(乙a=y一bt若£t=o,意味着实际中的原点是随着研究的范围的变化而不同,趋势方程的原点的移动,给计算带来了较大的便利。若数列为奇数项,中间项的时间序号t被设为0,则数列的时间顺序分别为……-3,-2,-1,0,1,2,3,……那末,Et=0o若数列为偶数项,原点可设在中间两项的中点,则t值分别为……-5,-3,-1,(0)1,3,5,……如此,同样可使£t=0。于是系数a、b的计算式便可得到简化:£tyb=V—乙12a=y尽管两方程原点不一样,但预测的结果完全一致。现实生活中,大量的现象是非线性发展的,因此,研究长期趋势变动的各种曲线类型是十分必要的。当客观现象的发展呈曲线变动时,仍然可以用最小平方配合曲线,求趋势值。曲线种类很多,这里就不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论