中南民族大学《机器学习》2022-2023学年第一学期期末试卷_第1页
中南民族大学《机器学习》2022-2023学年第一学期期末试卷_第2页
中南民族大学《机器学习》2022-2023学年第一学期期末试卷_第3页
中南民族大学《机器学习》2022-2023学年第一学期期末试卷_第4页
中南民族大学《机器学习》2022-2023学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页中南民族大学《机器学习》

2022-2023学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在进行模型选择时,除了考虑模型的性能指标,还需要考虑模型的复杂度和可解释性。假设我们有多个候选模型。以下关于模型选择的描述,哪一项是不正确的?()A.复杂的模型通常具有更高的拟合能力,但也更容易过拟合B.简单的模型虽然拟合能力有限,但更容易解释和理解C.对于一些对可解释性要求较高的任务,如医疗诊断,应优先选择复杂的黑盒模型D.在实际应用中,需要根据具体问题和需求综合权衡模型的性能、复杂度和可解释性2、在进行迁移学习时,以下关于迁移学习的应用场景和优势,哪一项是不准确的?()A.当目标任务的数据量较少时,可以利用在大规模数据集上预训练的模型进行迁移学习B.可以将在一个领域学习到的模型参数直接应用到另一个不同但相关的领域中C.迁移学习能够加快模型的训练速度,提高模型在新任务上的性能D.迁移学习只适用于深度学习模型,对于传统机器学习模型不适用3、假设正在开发一个用于情感分析的深度学习模型,需要对模型进行优化。以下哪种优化算法在深度学习中被广泛使用?()A.随机梯度下降(SGD)B.自适应矩估计(Adam)C.牛顿法D.共轭梯度法4、在一个回归问题中,如果需要考虑多个输出变量之间的相关性,以下哪种模型可能更适合?()A.多元线性回归B.向量自回归(VAR)C.多任务学习模型D.以上模型都可以5、假设正在开发一个智能推荐系统,用于向用户推荐个性化的商品。系统需要根据用户的历史购买记录、浏览行为、搜索关键词等信息来预测用户的兴趣和需求。在这个过程中,特征工程起到了关键作用。如果要将用户的购买记录转化为有效的特征,以下哪种方法不太合适?()A.统计用户购买每种商品的频率B.对用户购买的商品进行分类,并计算各类别的比例C.直接将用户购买的商品名称作为特征输入模型D.计算用户购买商品的时间间隔和购买周期6、在机器学习中,模型的可解释性也是一个重要的问题。以下关于模型可解释性的说法中,错误的是:模型的可解释性是指能够理解模型的决策过程和预测结果的能力。可解释性对于一些关键领域如医疗、金融等非常重要。那么,下列关于模型可解释性的说法错误的是()A.线性回归模型具有较好的可解释性,因为它的决策过程可以用公式表示B.决策树模型也具有一定的可解释性,因为可以通过树形结构直观地理解决策过程C.深度神经网络模型通常具有较低的可解释性,因为其决策过程非常复杂D.模型的可解释性和性能是相互矛盾的,提高可解释性必然会降低性能7、在一个信用评估模型中,我们需要根据用户的个人信息、财务状况等数据来判断其信用风险。数据集存在类别不平衡的问题,即信用良好的用户数量远远多于信用不良的用户。为了解决这个问题,以下哪种方法是不合适的?()A.对少数类样本进行过采样,增加其数量B.对多数类样本进行欠采样,减少其数量C.为不同类别的样本设置不同的权重,在损失函数中加以考虑D.直接使用原始数据集进行训练,忽略类别不平衡8、考虑一个图像分类任务,使用深度学习模型进行训练。在训练过程中,如果发现模型在训练集上的准确率很高,但在验证集上的准确率较低,可能存在以下哪种问题?()A.模型欠拟合,需要增加模型的复杂度B.数据预处理不当,需要重新处理数据C.模型过拟合,需要采取正则化措施D.训练数据量不足,需要增加更多的数据9、在一个强化学习场景中,智能体需要在一个复杂的环境中学习最优策略。如果环境的奖励信号稀疏,以下哪种技术可以帮助智能体更好地学习?()A.奖励塑造B.策略梯度估计的改进C.经验回放D.以上技术都可以10、在一个多分类问题中,如果类别之间存在层次关系,以下哪种分类方法可以考虑这种层次结构?()A.层次分类B.一对一分类C.一对多分类D.以上方法都可以11、假设正在进行一个情感分析任务,使用深度学习模型。以下哪种神经网络架构常用于情感分析?()A.卷积神经网络(CNN)B.循环神经网络(RNN)C.长短时记忆网络(LSTM)D.以上都可以12、在分类问题中,如果正负样本比例严重失衡,以下哪种评价指标更合适?()A.准确率B.召回率C.F1值D.均方误差13、假设我们要使用机器学习算法来预测股票价格的走势。以下哪种数据特征可能对预测结果帮助较小()A.公司的财务报表数据B.社交媒体上关于该股票的讨论热度C.股票代码D.宏观经济指标14、某研究团队正在开发一个用于医疗诊断的机器学习系统,需要对疾病进行预测。由于医疗数据的敏感性和重要性,模型的可解释性至关重要。以下哪种模型或方法在提供可解释性方面具有优势?()A.深度学习模型B.决策树C.集成学习模型D.强化学习模型15、集成学习是一种提高机器学习性能的方法。以下关于集成学习的说法中,错误的是:集成学习通过组合多个弱学习器来构建一个强学习器。常见的集成学习方法有bagging、boosting和stacking等。那么,下列关于集成学习的说法错误的是()A.bagging方法通过随机采样训练数据来构建多个不同的学习器B.boosting方法通过逐步调整样本权重来构建多个不同的学习器C.stacking方法将多个学习器的预测结果作为新的特征输入到一个元学习器中D.集成学习方法一定比单个学习器的性能更好16、在一个信用评估的问题中,需要根据个人的信用记录、收入、债务等信息评估其信用风险。以下哪种模型评估指标可能是最重要的?()A.准确率(Accuracy),衡量正确分类的比例,但在不平衡数据集中可能不准确B.召回率(Recall),关注正例的识别能力,但可能导致误判增加C.F1分数,综合考虑准确率和召回率,但对不同类别的权重相同D.受试者工作特征曲线下面积(AUC-ROC),能够评估模型在不同阈值下的性能,对不平衡数据较稳健17、在处理不平衡数据集时,以下关于解决数据不平衡问题的方法,哪一项是不正确的?()A.过采样方法通过增加少数类样本的数量来平衡数据集B.欠采样方法通过减少多数类样本的数量来平衡数据集C.合成少数类过采样技术(SMOTE)通过合成新的少数类样本来平衡数据集D.数据不平衡对模型性能没有影响,不需要采取任何措施来处理18、在进行数据预处理时,异常值的处理是一个重要环节。假设我们有一个包含员工工资数据的数据集。以下关于异常值处理的方法,哪一项是不正确的?()A.可以通过可视化数据分布,直观地发现异常值B.基于统计学方法,如三倍标准差原则,可以识别出可能的异常值C.直接删除所有的异常值,以保证数据的纯净性D.对异常值进行修正或替换,使其更符合数据的整体分布19、在一个无监督学习问题中,需要发现数据中的潜在结构。如果数据具有层次结构,以下哪种方法可能比较适合?()A.自组织映射(SOM)B.生成对抗网络(GAN)C.层次聚类D.以上方法都可以20、在一个图像生成的任务中,需要根据给定的描述或条件生成逼真的图像。考虑到生成图像的质量、多样性和创新性。以下哪种生成模型可能是最有潜力的?()A.生成对抗网络(GAN),通过对抗训练生成逼真的图像,但可能存在模式崩溃和训练不稳定的问题B.变分自编码器(VAE),能够学习数据的潜在分布并生成新样本,但生成的图像可能较模糊C.自回归模型,如PixelCNN,逐像素生成图像,保证了局部一致性,但生成速度较慢D.扩散模型,通过逐步去噪生成图像,具有较高的质量和多样性,但计算成本较高二、简答题(本大题共3个小题,共15分)1、(本题5分)解释机器学习在电信行业中的用户流失预测。2、(本题5分)简述主成分分析(PCA)在数据降维中的原理和步骤。3、(本题5分)简述在金融风险管理中,机器学习的作用。三、应用题(本大题共5个小题,共25分)1、(本题5分)运用K-Means聚类对学生的学习成绩进行分组。2、(本题5分)使用强化学习算法训练智能体进行飞行射击游戏。3、(本题5分)利用结构生物学数据解析生物

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论