版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省忻州市忻府区忻州一中高三下第一次测试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,满足约束条件,则的最大值是()A. B. C.13 D.2.函数的大致图象为()A. B.C. D.3.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A., B.存在点,使得平面平面C.平面 D.三棱锥的体积为定值4.函数的图象大致为()A. B.C. D.5.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,异面直线SC与OE所成角的正切值为()A. B. C. D.6.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则7.已知集合,则()A. B.C. D.8.若非零实数、满足,则下列式子一定正确的是()A. B.C. D.9.若,,,则下列结论正确的是()A. B. C. D.10.已知函数,,若对任意的,存在实数满足,使得,则的最大值是()A.3 B.2 C.4 D.511.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为()A. B. C. D.12.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,的系数等于__.14.若向量满足,则实数的取值范围是____________.15.若实数x,y满足不等式组x+y-4≤0,2x-3y-8≤0,x≥1,则目标函数16.已知全集,集合,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.18.(12分)据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.19.(12分)已知点为椭圆上任意一点,直线与圆交于,两点,点为椭圆的左焦点.(1)求证:直线与椭圆相切;(2)判断是否为定值,并说明理由.20.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.21.(12分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.22.(10分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由已知画出可行域,利用目标函数的几何意义求最大值.【详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.2、A【解析】
利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,,,.故选:A.【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.3、B【解析】
根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.4、A【解析】
根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.【详解】因为,所以是偶函数,排除C和D.当时,,,令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.故选:A【点睛】本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.5、D【解析】
可过点S作SF∥OE,交AB于点F,并连接CF,从而可得出∠CSF(或补角)为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tan∠CSF的值.【详解】如图,过点S作SF∥OE,交AB于点F,连接CF,则∠CSF(或补角)即为异面直线SC与OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故选:D.【点睛】本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.6、D【解析】A.若,则或,故A错误;B.若,则或故B错误;C.若,则或,或与相交;D.若,则,正确.故选D.7、B【解析】
先由得或,再计算即可.【详解】由得或,,,又,.故选:B【点睛】本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.8、C【解析】
令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.【详解】令,则,,,,,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.9、D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.10、A【解析】
根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值.【详解】,,对任意的,存在实数满足,使得,易得,即恒成立,,对于恒成立,设,则,令,在恒成立,,故存在,使得,即,当时,,单调递减;当时,,单调递增.,将代入得:,,且,故选:A【点睛】本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.11、B【解析】
根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【详解】.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.12、B【解析】
考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又,当时,,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】
由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.14、【解析】
根据题意计算,解得答案.【详解】,故,解得.故答案为:.【点睛】本题考查了向量的数量积,意在考查学生的计算能力.15、12【解析】
画出约束条件的可行域,求出最优解,即可求解目标函数的最大值.【详解】根据约束条件画出可行域,如下图,由x+y-4=02x-3y-8=0,解得目标函数y=3x-z,当y=3x-z过点(4,0)时,z有最大值,且最大值为12.故答案为:12.【点睛】本题考查线性规划的简单应用,属于基础题.16、【解析】
根据题意可得出,然后进行补集的运算即可.【详解】根据题意知,,,,.故答案为:.【点睛】本题考查列举法的定义、全集的定义、补集的运算,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)求出函数的定义域,即可求出结论;(2)化简集合,根据确定集合的端点位置,建立的不等量关系,即可求解.【详解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以实数的取值范围为.【点睛】本题考查集合的运算,集合间的关系求参数,考查函数的定义域,属于基础题.18、(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省;(2);(3)分布列见详解,数学期望为【解析】
(1)通过数据的观察以及计算人工造林面积与造林总面积比值,可得结果.(2)通过数据的观察以及计算新封山育林面积与造林总面积比值,得出比值超过的地区个数,然后可得结果.(3)计算退化林修复面积超过一万公顷的地区中选两个地区总数,退化林修复面积超过六万公顷的地区的个数为,列出所有取值并计算相应概率,然后可得结果.【详解】(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省.(2)记事件A:在这十个地区中,任选一个地区,该地区新封山育林面积占总面积的比值超过根据数据可知:青海地区人工造林面积占总面积比超过,则(3)退化林修复面积超过一万公顷有6个地区:内蒙、河北、河南、重庆、陕西、新疆,其中退化林修复面积超过六万公顷有3个地区:内蒙、河北、重庆,所以X的取值为0,1,2所以,,随机变量X的分布列如下:【点睛】本题考查数据的处理以及离散型随机变量的分布列与数学期望,审清题意,细心计算,属基础题.19、(1)证明见解析;(2)是,理由见解析.【解析】
(1)根据判别式即可证明.(2)根据向量的数量积和韦达定理即可证明,需要分类讨论,【详解】解:(1)当时直线方程为或,直线与椭圆相切.当时,由得,由题知,,即,所以.故直线与椭圆相切.(2)设,,当时,,,,所以,即.当时,由得,则,,.因为.所以,即.故为定值.【点睛】本题考查椭圆的简单性质,考查向量的运算,注意直线方程和椭圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度梁兰与配偶的离婚字画捐赠合同3篇
- 2024年二手挖掘机交易合同3篇
- 2024年汽车抵押贷款合同样本与合同履行监督3篇
- 中国地质大学(武汉)《物理实验》2021-2022学年第一学期期末试卷
- 2024年标准化洗涤服务合同范本版B版
- 2024年度稻草农业残留物资源化利用合同
- 2024年度农产品电商平台运营推广合同14篇
- 2024年中国炼油行业市场运行态势、进出口贸易及发展趋势预测报告
- 2024版全新咨询服务合同:某咨询公司与客户之间的咨询服务协议2篇
- 2024年度智慧城市基础设施建设项目融资租赁合同3篇
- 建设工程施工项目合伙制实施方案
- 《大学英语》复习题专升本
- 新机场考试通行证模拟试题知识讲解
- 2022年新疆克拉玛依金龙国民村镇银行招聘16名人员模拟试题3套(含答案解析)
- 三度房室传导阻滞护理查房课件
- 讲课比赛精品PPT-全概率公式贝叶斯公式-概率论与数理统计
- 药理学39人工合成抗菌药课件
- 工期定额计算表格
- 小学一年级上册口算练习题(可打印)
- 老年人情绪状态测评忧郁量表
- ping程序的设计及实现报告
评论
0/150
提交评论