版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省郸城县第二高级中学高考考前模拟数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8 B.9 C.10 D.112.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是()A. B.3 C. D.3.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)4.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是()A.乙的数据分析素养优于甲B.乙的数学建模素养优于数学抽象素养C.甲的六大素养整体水平优于乙D.甲的六大素养中数据分析最差5.已知命题:任意,都有;命题:,则有.则下列命题为真命题的是()A. B. C. D.6.已知,,,则的大小关系为()A. B. C. D.7.已知(i为虚数单位,),则ab等于()A.2 B.-2 C. D.8.已知集合,,,则集合()A. B. C. D.9.一个几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.10.已知函数的图象如图所示,则下列说法错误的是()A.函数在上单调递减B.函数在上单调递增C.函数的对称中心是D.函数的对称轴是11.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A. B. C. D.12.若复数满足(是虚数单位),则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4,在平面内,是直线上的动点,则点到平面的距离为_______,点到直线的距离的最大值为_______.14.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________.15.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.16.记数列的前项和为,已知,且.若,则实数的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)[选修4-5:不等式选讲]:已知函数.(1)当时,求不等式的解集;(2)设,,且的最小值为.若,求的最小值.18.(12分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.19.(12分)已知函数.(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间.20.(12分)已知公差不为零的等差数列的前n项和为,,是与的等比中项.(1)求;(2)设数列满足,,求数列的通项公式.21.(12分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.22.(10分)在等比数列中,已知,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.2、D【解析】
设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或..故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.3、B【解析】
根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)=f(x),得f(x)是周期函数且周期为2,先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,,所以,选项A错误;选项B,因为,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;选项C,,所以,即,选项C错误;选项D,,选项D错误.故选:B.【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.4、C【解析】
根据题目所给图像,填写好表格,由表格数据选出正确选项.【详解】根据雷达图得到如下数据:数学抽象逻辑推理数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【点睛】本题考查统计问题,考查数据处理能力和应用意识.5、B【解析】
先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则不成立.则,,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.6、A【解析】
根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【详解】因为,所以.因为,所以,因为,为增函数,所以所以,故选:A.【点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.7、A【解析】
利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.【详解】,,得,..故选:.【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.8、D【解析】
根据集合的混合运算,即可容易求得结果.【详解】,故可得.故选:D.【点睛】本题考查集合的混合运算,属基础题.9、B【解析】
由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.【详解】由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,如图,故其表面积为,故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.10、B【解析】
根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.【详解】由图象可得,函数的周期,所以.将点代入中,得,解得,由,可得,所以.令,得,故函数在上单调递减,当时,函数在上单调递减,故A正确;令,得,故函数在上单调递增.当时,函数在上单调递增,故B错误;令,得,故函数的对称中心是,故C正确;令,得,故函数的对称轴是,故D正确.故选:B.【点睛】本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.11、D【解析】
利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.【详解】根据题意,可知为等差数列,公差,由成等比数列,可得,∴,解得.∴.根据单调性,可知当或时,取到最小值,最小值为.故选:D.【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.12、B【解析】
利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
三棱锥的底面边长和侧棱长都为4,所以在平面的投影为的重心,利用解直角三角形,即可求出点到平面的距离;,可得点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径,即可求出结论.【详解】边长为,则中线长为,点到平面的距离为,点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径.又三棱锥的底面边长和侧棱长都为4,以下求过和的两个平行平面间距离,分别取中点,连,则,同理,分别过做,直线确定平面,直线确定平面,则,同理,为所求,,,所以到直线最大距离为.故答案为:;.【点睛】本题考查空间中的距离、正四面体的结构特征,考查空间想象能力,属于较难题.14、【解析】
由题意容积,求导研究单调性,分析即得解.【详解】由题意:容积,,则,由得或(舍去),令则为V在定义域内唯一的极大值点也是最大值点,此时.故答案为:【点睛】本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.15、-1【解析】
由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.16、【解析】
根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【点睛】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)当时,,原不等式可化为,分类讨论即可求得不等式的解集;(2)由题意得,的最小值为,所以,由,得,利用基本不等式即可求解其最小值.【详解】(1)当时,,原不等式可化为,①当时,不等式①可化为,解得,此时;当时,不等式①可化为,解得,此时;当时,不等式①可化为,解得,此时,综上,原不等式的解集为.(2)由题意得,,因为的最小值为,所以,由,得,所以,当且仅当,即,时,的最小值为.【点睛】本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.18、(Ⅰ)证明见解析;(Ⅱ).【解析】
(Ⅰ)先证明
,再证明平面,利用面面垂直的判定定理,即可求证所求证;(Ⅱ)根据题意以为轴、轴、轴建立空间直角坐标系,求出平面和平面的向量,利用公式即可求解.【详解】(Ⅰ)证:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以为轴、轴、轴建立如图所示的空间直角坐标系,则,,,设平面的法向量为,则令,则,是平面的一个法向量设平面的一个法向量为令,则是平面的一个法向量=又二面角为钝二面角,其余弦值为.【点睛】本题考查线面、面面垂直的判定定理与性质定理,考查向量法求二面角的余弦值,考查直观想象能力与运算求解能力,属于中档题.19、(1);(2)见解析【解析】
(1)对函数进行求导,可以求出曲线在点处的切线,利用直线的斜截式方程可以求出曲线的切线方程;(2)对函数进行求导,对实数进行分类讨论,可以求出函数的单调区间.【详解】(1)当时,函数定义域为,,所以切线方程为;(2)当时,函数定义域为,在上单调递增当时,恒成立,函数定义域为,又在单调递增,单调递减,单调递增当时,函数定义域为,在单调递增,单调递减,单调递增当时,设的两个根为且,由韦达定理易知两根均为正根,且,所以函数的定义域为,又对称轴,且,在单调递增,单调递减,单调递增【点睛】本题考查了曲线切线方程的求法,考查了利用函数的导数讨论函数的单调性问题,考查了分类思想.20、(1);(2).【解析】
(1)根据题意,建立首项和公差的方程组,通过基本量即可写出前项和;(2)由(1)中所求,结合累加法求得.【详解】(1)由题意可得即又因为,所以,所以.(2)由条件及(1)可得.由已知得,所以.又满足上式,所以【点睛】本题考查等差数列通项公式和前项和的基本量的求解,涉及利用累加法求通项公式,属综合基础题.21、(1)见解析(2)见解析【解析】
(1)连结AC交BD于点O,连结OE,利用三角形中位线可得AP∥OE,从而可证AP∥平面EBD;(2)先证明BD⊥平面PCD,再证明PC⊥平面BDE,从而可证BE⊥PC.【详解】证明:(1)连结AC交BD于点O,连结OE因为四边形ABCD为平行四边形∴O为AC中点,又E为PC中点,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD为正三角形,E为PC中点所以PC⊥DE因为平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肱骨内髁骨折病因介绍
- 2024版全面推广新能源汽车充电设施合同3篇
- 荷花幼儿教育课件
- 基于二零二四年份的农业科技研发与推广合同2篇
- 六年级上册英语期中测试卷(1)-1小学英语教学教材课件
- 《客户关系管理实务》电子教案 4客户关系管理的含义(二)
- 北师大版七年级生物上册第1单元第2章第2节生物学研究的基本方法知识点课件
- 阿里云运维护航方案
- 智能制造生产线技术及应用 课件 项目四-4 FANUC工业机器人编程指令1
- 甲亢病因介绍
- 2022槽式太阳能集热系统技术规范
- 北京市2023-2024学年七年级上学期期末考试数学试题(含答案)3
- 红色中国风黎族三月三
- 8.1数学广角-数与形(基础作业)2024-2025学年六年级上册数学 人教版(含解析)
- JJF(京) 141-2024 小型压力蒸汽灭菌器温度、压力参数校准规范
- 《闪亮的坐标-劳模王进喜》教案- 2023-2024学年高教版(2023)中职语文职业模块
- 2024陕煤集团校园招聘3095人高频500题难、易错点模拟试题附带答案详解
- 2024-2025学年浙江省杭州市桐庐县三上数学期末监测模拟试题含解析
- 2021-2022学年新教材五四制道德与法治五年级上册单元、期中、期末测试题及答案(各1套共8套)
- GB/T 18029.30-2024轮椅车第30部分:改变乘坐者姿势的轮椅车测试方法和要求
- 2025届高考作文复习:议论文拟题指导 课件
评论
0/150
提交评论