玉林师范学院《机器视觉与图像处理》2023-2024学年第一学期期末试卷_第1页
玉林师范学院《机器视觉与图像处理》2023-2024学年第一学期期末试卷_第2页
玉林师范学院《机器视觉与图像处理》2023-2024学年第一学期期末试卷_第3页
玉林师范学院《机器视觉与图像处理》2023-2024学年第一学期期末试卷_第4页
玉林师范学院《机器视觉与图像处理》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页玉林师范学院

《机器视觉与图像处理》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的车牌识别是智能交通系统中的重要组成部分。假设要在一个高速公路收费站实现准确的车牌识别,以下关于车牌识别方法的描述,正确的是:()A.基于边缘检测和字符分割的方法对车牌的变形和污渍具有很强的适应性B.深度学习中的卷积神经网络能够直接从车牌图像中识别出字符,但对车牌的倾斜和光照不均敏感C.车牌识别系统只需要在白天光照良好的条件下工作,夜间和恶劣天气下无法正常运行D.车牌识别的准确率只取决于车牌图像的清晰度,与车牌的颜色和字体无关2、在一个基于计算机视觉的机器人导航系统中,需要根据环境图像来规划机器人的路径。以下哪种视觉导航方法可能更适合复杂动态环境?()A.基于地图的导航B.基于视觉里程计的导航C.基于深度学习的端到端导航D.以上都是3、计算机视觉中的图像增强技术可以改善图像质量。假设要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,正确的是:()A.简单地增加图像的亮度就能有效改善低光照图像的质量B.直方图均衡化方法总是能够在不引入噪声的情况下增强图像对比度C.基于深度学习的图像增强方法能够自适应地学习到适合的增强策略D.图像增强不会改变图像的原始信息和内容4、计算机视觉中的视频分析需要对连续的图像帧进行处理和理解。假设要分析一段监控视频中的人群行为,包括行走方向、聚集和分散等。以下哪种视频分析技术在处理这种复杂的群体行为时最为有效?()A.帧间差分法B.背景减除法C.光流法结合轨迹分析D.深度学习的行为识别模型5、在计算机视觉中,以下哪种方法常用于图像的语义分割中的多尺度特征融合?()A.特征金字塔B.空洞卷积C.注意力机制D.以上都是6、视频分析是计算机视觉的一个重要领域。假设我们要分析一段监控视频,以检测异常行为,如打架、盗窃等。对于这种实时性要求较高的视频分析任务,以下哪种方法更适合用于快速处理和检测?()A.对每一帧图像单独进行分析B.基于光流的方法跟踪对象运动C.利用深度学习模型直接对视频进行分析D.采用传统的图像处理方法,如背景减除7、计算机视觉中的场景理解需要从图像中推断出物体之间的关系和场景的语义信息。假设要理解一张室内办公室场景的图像,包括家具的布局、人员的活动等。以下哪种方法在进行场景理解时最为有效?()A.基于对象检测和分类的方法B.基于图模型的场景表示C.基于深度学习的场景解析D.基于规则推理的方法8、计算机视觉在安防监控领域有广泛应用。假设要通过监控摄像头实时检测人群中的异常行为,以下哪种方法可能需要大量的标注数据进行训练?()A.基于规则的方法B.基于深度学习的方法C.基于背景减除的方法D.基于帧差法的方法9、计算机视觉中的图像超分辨率重建旨在提高图像的分辨率和细节。假设要将一张低分辨率的老照片重建为高分辨率的清晰图像,同时要保持图像的自然度和真实性。以下哪种图像超分辨率重建方法最为适合?()A.基于插值的方法B.基于重建的方法C.基于深度学习的方法D.基于学习字典的方法10、在计算机视觉的图像检索任务中,需要根据用户提供的示例图像从大规模图像数据库中找到相似的图像。假设要构建一个高效的图像搜索引擎,能够快速准确地返回相关图像。以下哪种图像检索方法在处理大规模数据时性能更优?()A.基于内容的图像检索B.基于文本标注的图像检索C.基于哈希编码的图像检索D.基于深度学习特征的图像检索11、在计算机视觉中,图像分类是一项重要任务。假设我们要对大量的动物图片进行分类,将其分为猫、狗、鸟等类别。以下关于图像分类方法的描述,哪一项是不准确的?()A.基于深度学习的卷积神经网络(CNN)在图像分类任务中表现出色,能够自动学习图像的特征B.传统的机器学习方法如支持向量机(SVM)在处理大规模图像数据时,性能通常不如深度学习方法C.图像分类只需要考虑图像的颜色和形状等低层次特征,高层语义信息对分类结果影响不大D.为了提高分类准确率,可以使用数据增强技术,如旋转、翻转、裁剪等操作来扩充数据集12、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设一个工厂需要检测生产线上的零件是否存在缺陷。以下关于工业检测中的计算机视觉的描述,哪一项是不准确的?()A.能够快速准确地检测出零件的表面缺陷、尺寸偏差等问题B.可以通过机器视觉系统对零件进行自动分类和筛选C.工业检测中的计算机视觉系统需要高度的稳定性和可靠性,对环境变化不敏感D.计算机视觉在工业检测中的应用已经非常成熟,不需要人工干预和校验13、在计算机视觉的三维重建任务中,假设要从一系列二维图像重建出物体的三维模型。以下关于相机参数校准的重要性,哪一项是不正确的?()A.准确的相机参数有助于提高三维重建的精度B.相机参数校准可以减少重建过程中的误差累积C.即使相机参数不准确,也能通过后续处理得到精确的三维模型D.不同相机的参数差异会影响三维重建的结果14、在计算机视觉的目标跟踪任务中,需要在连续的图像帧中持续跟踪一个特定的目标。假设要跟踪一个在运动场上快速移动且形状变化的运动员,同时存在其他相似物体的干扰。以下哪种目标跟踪算法在这种具有挑战性的场景下表现更佳?()A.基于卡尔曼滤波的跟踪B.基于粒子滤波的跟踪C.基于深度学习的跟踪D.基于均值漂移的跟踪15、在计算机视觉中,目标检测是一项重要任务。假设要在一张包含众多物体的复杂图像中准确检测出不同类型的车辆,例如轿车、卡车和摩托车。图像中的车辆可能具有不同的颜色、大小和姿态,而且背景也较为复杂。为了实现高精度的车辆检测,以下哪种方法通常被认为是最有效的?()A.基于传统图像处理技术,如边缘检测和形态学操作B.使用基于深度学习的目标检测算法,如FasterR-CNNC.采用简单的模板匹配方法,根据预先定义的车辆模板进行匹配D.对图像进行全局特征提取,然后基于这些特征进行分类16、在计算机视觉的目标计数任务中,统计图像或视频中目标的数量。假设要统计一个果园中苹果的数量,以下关于目标计数方法的描述,哪一项是不正确的?()A.可以基于图像分割和对象识别的方法,先分割出每个苹果,然后进行计数B.利用深度学习中的回归模型直接预测苹果的数量C.目标计数不受苹果的大小、形状和分布的影响,任何情况下都能准确计数D.结合多视角图像或视频序列可以提高目标计数的准确性17、计算机视觉中的深度估计是确定场景中物体距离相机的远近。假设要为机器人导航提供深度信息,以下关于深度估计方法的精度要求,哪一项是最为关键的?()A.能够区分不同物体的大致距离范围即可B.提供精确到毫米级别的深度信息,确保机器人安全导航C.深度估计的精度对机器人导航影响不大,可以忽略D.精度要求取决于机器人的运动速度,速度越快要求精度越低18、在计算机视觉的行人重识别任务中,假设要在多个摄像头拍摄的画面中找到同一个行人。以下关于特征融合的方法,哪一项是不太合理的?()A.将行人的外观特征和步态特征进行融合B.简单地将不同特征进行拼接,不考虑权重分配C.根据特征的重要性为其分配不同的权重进行融合D.利用深度学习模型自动学习特征的融合方式19、在计算机视觉的人物姿态估计任务中,需要确定图像中人物的关节位置和姿态。假设要开发一个用于健身应用的姿态估计系统,以下关于模型训练数据的获取,哪一项是比较困难的?()A.从公开的数据集获取大量的人物姿态图像B.自己拍摄不同人群在各种健身动作下的图像C.利用合成数据生成多样化的人物姿态样本D.从社交媒体上收集用户分享的健身照片20、计算机视觉在农业领域的应用中,例如对农作物的生长监测。假设要通过图像分析评估农作物的健康状况,以下哪种特征可能对判断病虫害的存在较为敏感?()A.农作物的颜色和纹理B.农作物的高度和形状C.农田的土壤湿度D.农田的地理位置21、在计算机视觉的图像语义分割任务中,假设要处理具有多尺度特征的图像,例如同时包含大物体和小物体的场景。以下关于处理多尺度特征的方法描述,正确的是:()A.使用单一尺度的特征提取网络可以应对多尺度问题,通过调整网络参数即可B.采用多尺度输入图像,分别进行处理后再融合结果,能够有效解决多尺度问题,但计算量大C.空洞卷积在处理多尺度特征时会引入大量的噪声,降低分割精度D.图像语义分割中多尺度问题无法解决,只能尽量避免处理这类图像22、计算机视觉中的工业检测任务需要检测产品的缺陷和瑕疵。假设要在生产线上对一批电子产品的外观进行检测,要求快速准确地发现微小的缺陷。以下哪种工业检测方法在处理这种高精度要求的任务时最为适用?()A.机器视觉检测B.人工目检C.抽样检测D.基于统计的检测23、计算机视觉中的姿态估计是指确定物体在三维空间中的位置和方向。以下关于姿态估计的说法,错误的是()A.姿态估计可以通过单目相机、双目相机或深度相机来实现B.基于深度学习的方法在姿态估计任务中表现出了较高的精度C.姿态估计在机器人操作、增强现实等领域有着重要的应用价值D.姿态估计的结果总是非常精确,不受物体形状和遮挡的影响24、计算机视觉中的目标重识别任务旨在在不同的摄像头视角中识别出同一目标。假设要在一个大型商场的多个摄像头中寻找一个特定的人物。以下关于目标重识别的描述,哪一项是不准确的?()A.可以通过提取目标的特征,如颜色、形状和纹理,来进行重识别B.深度学习中的特征学习方法能够提高目标重识别的准确率C.目标重识别不受摄像头视角、光照和人物姿态变化的影响D.可以通过建立目标的特征库,快速在多个摄像头中进行匹配和搜索25、计算机视觉中的表情识别用于分析人脸的表情状态。假设要在一个在线教育平台中检测学生的学习状态。以下关于表情识别的描述,哪一项是不正确的?()A.可以通过提取面部肌肉的运动特征来判断表情B.深度学习中的卷积神经网络能够自动学习表情的特征表示C.表情识别能够准确区分细微的表情变化,如困惑和专注D.表情识别不受面部遮挡和光照变化的影响,始终能够准确判断26、在计算机视觉的三维重建任务中,假设要从一组二维图像恢复出物体的三维结构。以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法需要多视角的图像,并且对相机的标定精度要求不高B.结构光方法能够快速准确地获取物体表面的三维信息,但对环境光敏感C.从运动中恢复结构(SfM)方法只适用于静态场景,无法处理动态物体D.所有的三维重建方法都能够生成高精度的、完整的物体三维模型27、在计算机视觉中,深度估计是确定场景中物体距离相机的距离。以下关于深度估计的说法,错误的是()A.可以通过立体视觉、结构光或飞行时间等技术来获取深度信息B.深度学习方法在单目深度估计中取得了显著进展C.深度估计对于三维重建、虚拟现实和增强现实等应用具有重要意义D.深度估计的结果总是非常精确,不需要进行后处理和优化28、计算机视觉在文物保护和修复中的应用可以帮助记录和分析文物的状态。假设要对一件古老的雕塑进行数字化保存和修复建议。以下关于计算机视觉在文物保护中的描述,哪一项是错误的?()A.可以通过三维扫描技术获取文物的精确形状和表面细节B.能够对文物的颜色和纹理进行分析,为修复提供参考C.计算机视觉可以完全替代人工的文物修复工作,保证修复的质量和效果D.可以建立文物的数字档案,方便后续的研究和展示29、计算机视觉中的三维重建技术可以从多幅图像中恢复物体的三维形状。假设要对一个古老建筑进行三维重建。以下关于三维重建方法的描述,哪一项是错误的?()A.可以通过立体视觉的方法,从不同角度拍摄的图像中计算深度信息B.基于结构光的方法能够快速获取物体表面的三维点云数据C.深度学习在三维重建中也有应用,能够学习从二维图像到三维形状的映射D.三维重建的结果总是非常精确,与真实物体的形状完全一致30、在计算机视觉的表情识别任务中,判断图像或视频中人物的表情。假设要开发一个用于在线教育的表情识别系统,以下关于表情识别方法的描述,哪一项是不正确的?()A.可以通过分析面部肌肉的运动和特征点的变化来识别表情B.深度学习模型能够学习不同表情的模式和特征,实现准确的表情分类C.表情识别系统需要考虑光照、头部姿态和遮挡等因素的影响D.表情识别可以准确地识别出所有细微和复杂的表情,不受个体差异和文化背景的影响二、应用题(本大题共5个小题,共25分)1、(本题5分)使用目标跟踪算法,跟踪演唱会观众的情绪变化。2、(本题5分)利用图像增强技术,提升昏暗环境下拍摄图像的亮度和对比度。3、(本题5分)开发一个能够识别不同种类猫科动物的计算机视觉系统。4、(本题5分)运用深度学习模型,对艺术画作的作者和流派进行识别。5、(本题5分)利用图像识别技术,对不同品牌的化妆品包装进行识别和分类。三、简答题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论