计量经济学答案_第1页
计量经济学答案_第2页
计量经济学答案_第3页
计量经济学答案_第4页
计量经济学答案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章

1.6一个完整的计量经济模型应包括哪些基本要素你能举一个例子吗

答:一个完整的计量经济模型应包括三个基本要素:经济变量、参数和随机误差项。

例如研究一家店铺月销售额的计量经济模型:其中,y为该月店铺

销售总额,X为该月店铺销售量,二者是经济变量;a和少为参数;〃是随机误差项。

1.7答:经济变量反映不同时间、不同空间的表现不同,取值不同,是可以观测

的因素。经济参数是表现经济变量相互依存程度的、决定经济构造和特征的、相

对稳定的因素,通常不能直接观测。

参数是未知的,又是不可直接观测的。由于随机误差项的存在,参数也不能

通过变量值去准确计算。只能通过变量样本观测值选择适当方法去估计。

1.n答:时间序列数据:中国1990年至2013年国内生产总值,可从中国统计局网站查

得数据。

截面数据:中国2013年各城市收入水平,中国统计局网站查得数据。

面板数据:中国19go年至2013年各城市收入水平,中国统计局网站查得数据。

虚拟变量数据:自然灾害状态,1表示该状态发生,0表示该状态不发生。

1.13为什么对已经估计出参数的模型还要进展检验你能举一个例子说明各种检验的必

要性吗

答:一,在设定模型时,对所研究经济现象规律性的认识可能并不充分,所依据的经济

理论对所研究对象也许还不能作出正确的解释和说明,

二,经济理论是正确的,但可能我们对问题的认识只是从某些局部出发,或者只是考察

了某些特殊的样本,以局部去说明全局的变化规律,可能导致偏差。

三,我们用以估计参数的统计数据或其它信息可能并不十分可靠,或者较多地采用了经

济突变时期的数据,不能真实代表所研究的经济关系,或者由于样本太小,所估计参数

只是抽样的某种偶然结果。

第二章

2.3

⑴当乙•=1000时,消费支出C的点预测值:G=50+0.6x1000=650(元)

(2)平均值的预测区间:

:C=650,/(10)=2.23,

0025曾芳3。

=(650-27.5380,650+27.5380)

=(622.46,677.54)

当乙=1000时,在95%的置信概率下消费支出C平均值的预测区间为(622.46,677.54)

兀。

(3)个别值的预测区间:

—师可密」™廊需^

=(650-30.1247,650+30.1247)

=(619.88,680.12)元

当匕二1000时,在95%的置信概率下消费支出C个别值的预测区间为(619.88,680.12)

元。

2.4

要求:(1)建立建筑面积与建造单位成本的线性回归方程,

(2)解释回归系数的经济意义。

(3)估计当建筑面积为4.5万平方米时,建造单位成本可能是多少?

«yXV-VxVv12X65671.12-42.28x19432-33531.52

解:⑴b=乙,乙乙.=-64.184

拼12x192.5022-42.28:522.428

Yy'Zx1943242.28

Q=--------b-----=)x----=1845.47

〃〃1212

y=1845.47-64.184x

(2)当建筑面积增加1万平方米时,建造单位成本平均下降64.184元,

⑶区间预测

取。二0.5,,平均值置信度95%的预测区间为

V产1556.647,%泗(10)=2.228,o-=31.736,n=10

Zx;二Z(/一了-1)=(1.9894厂2*11=43.5348

-了产二(4.5-3.5233)-2=0.9539

当/=4.5时,将相关数据代入计算得到

1556.647+2.228*31.736*J—+0,9539^1556.647+22.9386

V1243.5348

即是说,当建筑面积到达4.5万平方米时,建造平均单位成本平均值

置信度9596的预测区间为

(1533.7084,1579.5856)元。

第三章

思考题

3.2答:多元线性回归模型中,回归系数4(/=1,2,…,k)表示的是当

控制其它解释变量不变的条件下,第j个解释变量的单位变动对被解释变量平均

值的影响,这样的回归系数称为偏回归系数。

简单线性回归模型只有一个解释变量,回归系数表示解释变量的单位变动对

被解释变量平均值的影响。多元线性回归模型中的回归系数是偏回归系数,是当

控制其它解释变量不变的条件下,某个解释变量的单位变动对被解释变量平均值

的影响,从而可以实现保持某些控制变量不变的情况下,分析所关注的变量对被

解释变量的真实影响。

3.3答:多元线性回归中的古典假定比简单线性回归时多出一个无多重共线性假

定。假定各解释变量之间不存在线性关系,或各个解释变量观测值之间线性无关。

解释变量观测值矩阵X列满秩U列)。这是保证多元线性回归模型参数估计值

有解的重要条件。

3.4答:多元线性回归分析中,多重可决系数是模型中解释变量个数的增函数,

这给比照不同模型的多重可决系数带来缺陷,所以需要修正。

联系:由方差分析可以看出,F检验与可决系数有密切联系,二者都建设在

对应变量变差分解的根基上。F统计量也可通过可决系数计算。对方程联合显著

性检验的F检验,实际上也是对可决系数的显著性检验。

区别:F检验有准确的分布,它可以在给定显著性水平下,给出统计意义上

严格的结论。可决系数只能提供一个模糊的推测,可决系数越大,模型对数据的

拟合程度就越好。但要大到什么程度才算模型拟合得好,并没有一个绝对的数量

标准。

练习题3.4

△感觉3.5的数字有误,但是过程可

以参考(470895-70895)

3.5某商品的需求量(Y)、价格(X。和消费者收入(XJ,下表给出了解释变量X?

和.X?对Y线性回归方差分析的局部结果:

表3.10方差分析表

变差来源平方和(SS)自由度(df)平方和的均值(MSS)

来自回归(ESS)377067.19

来自残差(RSS)470895.00

总变差(TSS)19

1)回归模型估计结果的样本容量n、来自回归的平方和(ESS)、回归平方和ESS与

残差平方和RSS的自由度各为多少?

2)此模型的可决系数和修正的可决系数为多少?

3)利用此结果能对模型的检验得出什么结论?能否认为模型中的解释变量X2和X;

联合起来对某商品的需求量Y的影响是否显著?本例中能否判断两个解释变量匕和4

各自对某商品的需求量Y也都有显著影响?

【练习题3.5参考解答】:

变差来源平方和(SS)自由度(df)平方和的均值(MSS)

来自回归(ESS)377067.193-1=2188533.60

来自残差(RSS)70895.0020-3=174170.2941

总变差(TSS)447962.1919

1)n=19+l=20

来自回归的平方和(ESS)的自山度为k-1=3-1=2

残差平方和RSS的自由度为n-k=20-3=17

2)可决系数睦JSS-RSS=i一踏

TSSTSS)2

=377067.19+70895.00

=447962.19

n—\20-1

R2=\-(\-R2)=1-(1-0.8417)——=0.8231

n-k20-3

3)F=188533.60/4170.2941=45.2087

n-kR220-30.8417

或者户----------7=x=45.1955

k-\1-R-3-1---1-0.8417

所以可以认为模型中的解释变量X2和X、联合起来对某商品的需求量(Y)的影响显

但是,判断判断两个解释变量X?和.Xs各自对某商品的需求量Y也都有显著影响

需要t统计量,而本例中缺t统计量,还不能作出判断。

第四章

思考题

4.1答:多重共线性包括完全的多重共线性和不完全的多重共线性。多重共线性实质上是样木

数据问题,出现了解释变量系数矩阵的线性相关问题。

产生多重共线性的经济背景主要有以下几种情形:

第一,经济变量之间具有共同变化趋势。第二,模型中包含滞后变量。第三,

利用截面数据建设模型也可能出现多重共线性。第四,样本数据自身的原

因。

4.5答:原因是这些变量之间通常具有共同变化的趋势。

4.9

1)答:正确。

理由:在高度多重共线性的情形中,没有任何方法能从所给的样本中把存在高度

共线性的解释变量的各自影响分解开来,从而也就无法得到单个参数显著性检验

的t统计量,因此无法判断单个或多个偏回归系数的单个显著性。

2)答:错误。

理由:在完全多重共线性情况下,参数估计值的方差无穷大,因此不再是有效估

计量,从而BLUE不再成立。

3)答:正确。

理由:方差扩大因子必耳=」^,当R:时,方差扩大因子也会很大,说明变量

之间多重共线性也会越严重。

4)答:正确。

理由:较高的简单相关系数只是多重共线性存在的充分条件,而不是必要条件。

特别是在多于两个解释变量的回归模型中,有时较低的简单相关系数也可能存在

多重共线性,这时就需要检查偏相关系数。因此,并不能简单地依据相关系数进

展多重共线性的准确判断。

5)答:正确。

理由:以二元模型为例,Var(B,)=£,VIFVar(p;)=VIF,从而方差扩大囚

LX2iLX3i

子VIF越大,参数估计量的方法越大。

6)答:错误。

理由:在多元回归模型中,可能会由于多重共线性的存在导致R2很高的情况下,

各个参数单独的t检验却不显著。

7)答:正确。

理由:根据公式,Var(83)=「、,在两个解释变量线性相关程度一定的情

Zx5i(l-a

况下,X3的值很少变化,从而会使得很小,从而VarR)增大,如果全部%

值都一样,工乂4趋于零,Var%)将是无穷大。

8)正确。如果分析的目的仅仅是预测,则多重共线性是无害的。

练习题4.2

克莱因与戈德伯格曾用1921-1950年(1942-1944年战争期间略去)美国国内

消费Y和工资收入XI、非工资一非农业收入X2、农业收入X3的时间序列资料,

利用0LSE估计得出了以下回归方程:

(括号中的数据为相应参数估计量的标准误)o

试对上述模型进展评析,指出其中存在的问题,

解:从模型拟合结果可知,样本观测个数为27,消费模型的判定系数R?=0.95,

F统计量为107.37,在0.05置信水平下查分子自由度为3,分母自由度为23的

F临界值为3.028,计算的F值远大于临界值,说明回归方程是显著的。模型整

体拟合程度较高。

依据参数估计量及其标准误,可计算出各回归系数估计量的t统计量值:

除.外,其余的。值都很小。工资收入XI的系数的t检验值虽然显著,但该

系数的估计值过大,该值为工资收入对消费边际效应,因为它为1.059,意味着

工资收入每增加一美元,消费支出的增长平均将超过一美元,这与经济理论和常

识不符。

另外,理论上非工资一非农.业收入与农业收入也是消费行为的重要解释变量,但

两者的t检验都没有通过。这些迹象说明,模型中存在严重的多重共线性,不同

收入局部之间的相互关系,掩盖了各个局部对解释消费行为的单独影响。

4.5

(1)由于第三个解释变量是和的一个线性组合,所以可

能存在多重共线性问题。

(2)如果重新将模型设定为:

我们可以唯一地估计出四、.、%,但不能唯一地估计出尸2、优、A°

(3)由于不再有完全共线性,所有参数都能唯一地估计出来。

(4)答案同⑶

第五章

练习题5.1

5.3

题5.3参考解答:

解:(1)建设样本回归函数。

(0.808709)(15.74411)

(2)利用While方法检验异方差,则While检验结果见下表:

HeteroskedasticityTest:White

Prob.

F-statistic7.194463F(2,28)0.0030

Prob.

Obs*R-squared10.52295chi-Square(2)0.0052

ScaledexplainedProb.

SS30.08105Chi-Square(2)0.0000

由上述结果可知,该模型存在异方差。分析该模型存在异方差的理由是,从数据

可以看出,一是截面数据;二是各省市经济开展不平衡,使得一些省市农村居民

收入高出其它省市很多,如上海市、北京市、天津市和浙江省等。而有的省就很

低,如甘肃省、贵州省、云南省和陕

西省等。

(3)用加权最小二乘法修正异方差,分别选择权数

M=",W2=7?,卬3=止,经过试算,认为用权数卬3的效果最好。结果如下:

书写结果为

第八草

思考题

6.1答:DW检验是J.Durbin(杜宾)和G.S.Watson(沃特森)于1951年提出的一

种适用于小样本的检验方法,一般的计算机软件都可以计算出DW值。

给定显著水平a,依据样本容量n和解释变量个数k',查D.TV.表得d统

计量的上界du和下界dL,当(KcKdL时,说明存在一阶正自相关,而且正自相

关的程度随d向0的靠近而增强。当dlXcKdu时,说明为不能确定存在自相关。

当du〈d<4-du时,说明不存在一阶自相关。当4-du<d〈4-dL时,说明不能确定存

在自相关。当4-dL〈d<4时,说明存在一阶负自相关,而且负自相关的程度随d

向4的靠近而增强。

DW检验的前提条件:

(1)回归模型中含有截距项;

(2)解释变量是非随机的(因此与随机扰动项不相关)

(3)随机扰动项是一阶线性自相关。;

(4)回归模型中不把滞后内生变量[前定内生变量)做为解释变量。

(5)没有缺失数据,样本对比大。

DW检验的局限性:

(1)DW检验有两个不能确定的区域,一旦DW值落在这两个区域,就无法判

断。这时,只有增大样本容量或选取其他方法

(2)DW统计量的上、下界表要求*15,这是因为样本如果再小,利用残差

就很难对自相关的存在性做出对比正确的诊断

(3)DW检验不适应随机误差项具有高阶序列相关的检验.

(4)只适用于有常数项的回归模型并旦解释变量中不能含滞后的被解释变

6.4

(1)答:错误。当回归模型随机误差项有自相关时,普通最小二乘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论