2025届河北唐山市乐亭第一中学高考数学倒计时模拟卷含解析2_第1页
2025届河北唐山市乐亭第一中学高考数学倒计时模拟卷含解析2_第2页
2025届河北唐山市乐亭第一中学高考数学倒计时模拟卷含解析2_第3页
2025届河北唐山市乐亭第一中学高考数学倒计时模拟卷含解析2_第4页
2025届河北唐山市乐亭第一中学高考数学倒计时模拟卷含解析2_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北唐山市乐亭第一中学高考数学倒计时模拟卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.若函数在处有极值,则在区间上的最大值为()A. B.2 C.1 D.33.若复数,,其中是虚数单位,则的最大值为()A. B. C. D.4.将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知命题:任意,都有;命题:,则有.则下列命题为真命题的是()A. B. C. D.6.函数(),当时,的值域为,则的范围为()A. B. C. D.7.函数的大致图像为()A. B.C. D.8.函数在的图像大致为A. B. C. D.9.观察下列各式:,,,,,,,,根据以上规律,则()A. B. C. D.10.在等差数列中,,,若(),则数列的最大值是()A. B.C.1 D.311.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.12.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A.72 B.64 C.48 D.32二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=_______.14.如图,在中,已知,为边的中点.若,垂足为,则的值为__.15.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°16.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.18.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.①求;②规定,经过计算机计算可估计得,请根据①中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.19.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.20.(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.21.(12分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小.22.(10分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据对数的运算分别从充分性和必要性去证明即可.【详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.2、B【解析】

根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,,,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,,由于,所以在区间上的最大值为2.故选:B.【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.3、C【解析】

由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【点睛】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.4、A【解析】

求出函数的解析式,由函数为偶函数得出的表达式,然后利用充分条件和必要条件的定义判断即可.【详解】将函数的图象沿轴向左平移个单位长度,得到的图象对应函数的解析式为,若函数为偶函数,则,解得,当时,.因此,“”是“是偶函数”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.5、B【解析】

先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则不成立.则,,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.6、B【解析】

首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【详解】因为,所以,若值域为,所以只需,∴.故选:B【点睛】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.7、D【解析】

通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.8、B【解析】

由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.【详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.9、B【解析】

每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算.【详解】以及数列的应用根据题设条件,设数字,,,,,,,构成一个数列,可得数列满足,则,,.故选:B.【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项.10、D【解析】

在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.11、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.12、B【解析】

由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】

双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a>0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.14、【解析】

,由余弦定理,得,得,,,所以,所以.点睛:本题考查平面向量的综合应用.本题中存在垂直关系,所以在线性表示的过程中充分利用垂直关系,得到,所以本题转化为求长度,利用余弦定理和面积公式求解即可.15、4【解析】

设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知∠ODO1即为二面角C-AB-O的平面角,可求出OD, O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【详解】设△ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即为二面角∠ODO因为OA=OB=4, AB=42,所以△OAB在Rt△ODO1中,由cos60º=O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在Rt△O1由勾股定理可得:O1B2+O【点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题.16、【解析】

由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点抛物线方程为,准线方程为过作准线的垂线,垂足为,则设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得:或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)平面.见解析【解析】

(1)要证平面,只需证明,,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与平面的位置关系,进而求得答案.【详解】(1),为边的中点,,平面平面,平面平面,平面,平面,,在内,,为所在边的中点,,又,,平面.(2)判断可知,平面,证明如下:连接交于点,连接.、、分别为边、、的中点,.又是的重心,,,平面,平面,平面.【点睛】本题主要考查了求证线面垂直和线面平行,解题关键是掌握线面垂直判定定理和线面平行判断定理,考查了分析能力和空间想象能力,属于中档题.18、(1)分布列见解析;(2)①;②,.【解析】

(1)经过1轮投球,甲的得分的取值为,记一轮投球,甲投中为事件,乙投中为事件,相互独立,计算概率后可得分布列;(2)由(1)得,由两轮的得分可计算出,计算时可先计算出经过2轮后甲的得分的分布列(的取值为),然后结合的分布列和的分布可计算,由,代入,得两个方程,解得,从而得到数列的递推式,变形后得是等比数列,由等比数列通项公式得,然后用累加法可求得.【详解】(1)记一轮投球,甲命中为事件,乙命中为事件,相互独立,由题意,,甲的得分的取值为,,,,∴的分布列为:-101(2)由(1),,同理,经过2轮投球,甲的得分取值:记,,,则,,,,由此得甲的得分的分布列为:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴数列是等比数列,公比为,首项为,∴.∴.【点睛】本题考查随机变量的概率分布列,考查相互独立事件同时发生的概率,考查由数列的递推式求通项公式,考查学生的转化与化归思想,本题难点在于求概率分布列,特别是经过2轮投球后甲的得分的概率分布列,这里可用列举法写出各种可能,然后由独立事件的概率公式计算出概率.19、(1)见解析;(2)【解析】

(Ⅰ)证明:过点作于点,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴点是的中点,连结,则∴平面∴∥,∴四边形是矩形设,得:,又∵,∴,从而,过作于点,则∴是与平面所成角∴,∴与平面所成角的正弦值为考点:面面垂直的性质定理;线面平行的判定定理;线面垂直的性质定理;直线与平面所成的角.点评:本题主要考查了线面平行的证明和直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做:用向量法解题的关键是;首先正确的建立空间直角坐标系,正确求解平面的一个法向量.注意计算要仔细、认真.≌20、(1),函数的单调递增区间为;(2).【解析】

(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值的比值的取值范围,结合已知是锐角三角形,三角形内角和定理,最后求出的取值范围.【详解】解:(1)由已知,所以因此令得因此函数的单调递增区间为(2)由已知,∴由得,因此所以因为为锐角三角形,所以,解得因此,那么【点睛】本题考查了降幂公式、辅助角公式,考查了正弦定理,考查了正弦型三角函数的单调性,考查了数学运算能力.21、(1);(2).【解析】

(1)以分别为轴,轴,轴,建立空间直角坐标系,设底面正方形边长为再求解与平面的法向量,继而求得直线与平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论