2025届甘肃省张掖市山丹县一中高三最后一模数学试题含解析_第1页
2025届甘肃省张掖市山丹县一中高三最后一模数学试题含解析_第2页
2025届甘肃省张掖市山丹县一中高三最后一模数学试题含解析_第3页
2025届甘肃省张掖市山丹县一中高三最后一模数学试题含解析_第4页
2025届甘肃省张掖市山丹县一中高三最后一模数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省张掖市山丹县一中高三最后一模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则下列结论错误的是()A.函数的最小正周期为πB.函数的图象关于点对称C.函数在上单调递增D.函数的图象可由的图象向左平移个单位长度得到2.若数列为等差数列,且满足,为数列的前项和,则()A. B. C. D.3.在中,,,,点满足,则等于()A.10 B.9 C.8 D.74.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率()A. B.C. D.5.如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,,则异面直线与所成角的余弦值为()A. B. C. D.6.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是()A.45 B.50 C.55 D.607.设,,,则的大小关系是()A. B. C. D.8.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.9.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是()A. B. C. D.10.已知,,则()A. B. C. D.11.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.12.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.32二、填空题:本题共4小题,每小题5分,共20分。13.已知函数恰好有3个不同的零点,则实数的取值范围为____14.从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,则事件“抽到的产品不是一等品”的概率为________15.过圆的圆心且与直线垂直的直线方程为__________.16.定义在上的奇函数满足,并且当时,则___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点和椭圆.直线与椭圆交于不同的两点,.(1)当时,求的面积;(2)设直线与椭圆的另一个交点为,当为中点时,求的值.18.(12分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.19.(12分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.20.(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、、(),求证:.21.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2+y2=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1和C2的极坐标方程:(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求|AB|的值.22.(10分)已知,,.(1)求的最小值;(2)若对任意,都有,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,,所以B正确;当时,,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.2、B【解析】

利用等差数列性质,若,则求出,再利用等差数列前项和公式得【详解】解:因为,由等差数列性质,若,则得,.为数列的前项和,则.故选:.【点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则.(2)要注意等差数列前项和公式的灵活应用,如.3、D【解析】

利用已知条件,表示出向量,然后求解向量的数量积.【详解】在中,,,,点满足,可得则==【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.4、A【解析】

计算出黑色部分的面积与总面积的比,即可得解.【详解】由,∴.故选:A【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.5、B【解析】

建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.6、D【解析】

根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,∴样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题7、A【解析】

选取中间值和,利用对数函数,和指数函数的单调性即可求解.【详解】因为对数函数在上单调递增,所以,因为对数函数在上单调递减,所以,因为指数函数在上单调递增,所以,综上可知,.故选:A【点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.8、A【解析】

由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.9、B【解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B.10、D【解析】

分别解出集合然后求并集.【详解】解:,故选:D【点睛】考查集合的并集运算,基础题.11、A【解析】

由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.【点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.12、B【解析】

设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.14、0.35【解析】

根据对立事件的概率和为1,结合题意,即可求出结果来.【详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,,抽到不是一等品的概率是,故答案为:.【点睛】本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题.15、【解析】

根据与已知直线垂直关系,设出所求直线方程,将已知圆圆心坐标代入,即可求解.【详解】圆心为,所求直线与直线垂直,设为,圆心代入,可得,所以所求的直线方程为.故答案为:.【点睛】本题考查圆的方程、直线方程求法,注意直线垂直关系的灵活应用,属于基础题.16、【解析】

根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值.【详解】满足,由函数对称性可知关于对称,且令,代入可得,由奇函数性质可知,所以令,代入可得,所以是以4为周期的周期函数,则当时,所以,所以,故答案为:.【点睛】本题考查了函数奇偶性与对称性的综合应用,周期函数的判断及应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】

(1)联立直线的方程和椭圆方程,求得交点的横坐标,由此求得三角形的面积.(2)法一:根据的坐标求得的坐标,将的坐标都代入椭圆方程,化简后求得的坐标,进而求得的值.法二:设出直线的方程,联立直线的方程和椭圆的方程,化简后写出根与系数关系,结合求得点的坐标,进而求得的值.【详解】(1)设,,若,则直线的方程为,由,得,解得,,设直线与轴交于点,则且.(2)法一:设点因为,,所以又点,都在椭圆上,所以解得或所以或.法二:设显然直线有斜率,设直线的方程为由,得所以又解得或所以或所以或.【点睛】本小题主要考查直线和椭圆的位置关系,考查椭圆中三角形面积的求法,考查运算求解能力,属于中档题.18、(1);(2)证明见解析【解析】

(1)利用零点分段法,求出各段的取值范围然后取并集可得结果.(2)利用绝对值三角不等式可得,然后使用柯西不等式可得结果.【详解】(1)由,所以由当时,则所以当时,则当时,则综上所述:(2)由当且仅当时取等号所以由,所以所以令根据柯西不等式,则当且仅当,即取等号由故,又则【点睛】本题考查使用零点分段法求解绝对值不等式以及柯西不等式的应用,属基础题.19、(Ⅰ)证明见解析;(Ⅱ).【解析】

(Ⅰ)先证明

,再证明平面,利用面面垂直的判定定理,即可求证所求证;(Ⅱ)根据题意以为轴、轴、轴建立空间直角坐标系,求出平面和平面的向量,利用公式即可求解.【详解】(Ⅰ)证:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以为轴、轴、轴建立如图所示的空间直角坐标系,则,,,设平面的法向量为,则令,则,是平面的一个法向量设平面的一个法向量为令,则是平面的一个法向量=又二面角为钝二面角,其余弦值为.【点睛】本题考查线面、面面垂直的判定定理与性质定理,考查向量法求二面角的余弦值,考查直观想象能力与运算求解能力,属于中档题.20、(1)①当时,在单调递增,②当时,单调递增区间为,,单调递减区间为(2)证明见解析【解析】

(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.【详解】(1),①当时,恒成立,则在单调递增②当时,令得,解得,又,∴∴当时,,单调递增;当时,,单调递减;当时,,单调递增.(2)依题意得,,则由(1)得,在单调递增,在上单调递减,在上单调递增∴若方程有三个实数解,则法一:双偏移法设,则∴在上单调递增,∴,∴,即∵,∴,其中,∵在上单调递减,∴,即设,∴在上单调递增,∴,∴,即∵,∴,其中,∵在上单调递增,∴,即∴.法二:直接证明法∵,,在上单调递增,∴要证,即证设,则∴在上单调递减,在上单调递增∴,∴,即(注意:若没有证明,扣3分)关于的证明:(1)且时,(需要证明),其中∴∴∴(2)∵,∴∴,即∵,,∴,则∴【点睛】本题考查函数与倒导数的综合应用,难度较难.(1)对于含参函数单调性的分析,可通过分析参数的临界值,由此分类讨论函数单调性;(2)利用导数证明不等式常用方法:构造函数,利用新函数的单调性确定函数的最值,从而达到证明不等式的目的.21、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.(Ⅱ)将射线θ=分别与曲线C1和C2极坐标方程联立,可得A,B的极坐标,然后简单计算,可得结果.【详解】(Ⅰ)由所以曲线的极坐标方程为,曲线的普通方程为则曲线的极坐标方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论