XRD分析方法介绍_第1页
XRD分析方法介绍_第2页
XRD分析方法介绍_第3页
XRD分析方法介绍_第4页
XRD分析方法介绍_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

XRD分析方法介绍2021/6/2711、x射线的产生及性质1.1x射线的产生

x射线首先是由伦琴于1895年发现的,其后很多科学家都对其进行了深入的研究,并将其作为一种分析方法得以应用。

x射线是由高速运动的电子突然受阻,由于与物质的能量交换作用而产生的。在实验室中,x射线的产生是用具有高真空度的x射线管来完成的。

x射线管的管壁用玻璃或透明陶瓷制成,管内高真空可以减少电子的运动阻力。阴极由钨灯丝构成,灯丝被3~4A的电流加热后发出大量的热电子,电子经聚焦和5000~8000v的电压加速后撞击阳极金属靶时,电子的猝然减速或停止运动,使大部分能量以热辐射的形式耗散掉,少部分能量则以x射线形式向外辐射,并产生x射线谱2021/6/2721.2x射线的性质

x射线是一种具有较短波长的高能电磁波,由原子内层轨道中电子跃迁或高能电子减速所产生。X射线的波长范围为0.01~100Å,介于紫外线和γ射线之间,并有部分重叠峰。

x射线是一种本质与可见光相同的电磁波,具有类似于可见光、电子、质子、中子等的性质——波粒二象性。x射线显示波动性时,有一定的频率和波长,表现出衍射现象

x射线与可见光相比,除具有波粒二象性的共性之外,还因其波长短、能量大而显示其特性:①穿透能力强;②折射率几乎等于1;③透过晶体时发生衍射。2021/6/2731.3x射线谱x射线是高速运动的电子撞击靶材突然减速时产生的。由x射线管发出的x射线包含两部分:一部分是具有连续波长的“白色”x射线,称为连续谱或“白谱”;另一部分是由阳极金属材料成分决定的波长确定的特征x射线,称为特征谱,也称为单色谱或标识谱。当x射线管外加电压足够高时,各靶材产生的x射线谱都由这两部分组成。

x射线管在不同管压下强度-波长曲线示意图(左:连续谱;右:连续谱和特征谱)是在连续谱的基础上叠加若干条具有一定波长的谱线,它和可见光中的单色相似,亦称单色x射线。2021/6/2741.3.1连续谱

连续谱是从某个最短波长(λmin)开始,强度随波长连续变化的线谱。产生连续谱的机理是:当高速运动的电子击靶时,电子穿过靶材原子核附近的强电场时被减速。电子减少的能量(ΔE)转化为所发射x射线光子能量(hυ),即hυ=ΔE。这种过程是一种量子过程。在连续谱中,峰值对应的波长约为1.5λmin。当x射线管电流不变时,随管电压提高,λmin向短波方向移动,且连续谱强度也随之增加。连续x射线谱只有在x射线的劳厄照相法中才用,在其他方法中均用单色x射线作为光源,连续谱的存在只能造成不希望有的背景,通常用滤波片或晶体单色器将其去除。2021/6/2751.3.2特征谱

原子可看成是由原子核及绕核运动的电子组成。电子分布在不同能级的壳层上,离核最近的k层能量最低,其次是L、M、N等能级逐渐增高。特征谱是若干波长一定而强度很大的x射线谱。特征谱的产生与靶材中原子结构及原子内层电子跃迁过程有关。当高速运动的电子击靶时,具有高能量的电子深入到靶材的原子中,激出原子内层电子,而使原子处于不稳定的激发态,为使原子恢复至稳定的低能态,邻近的电子立即自发地填其空穴,同时伴随多余能量的释放,产生波长确定的x射线,其x射线的频率和能量由原子跃迁前后的电子能级(E2和E1)决定,即hυ=E2―E1

x射线的这种产生过程类似于光学光谱的量子过程。2021/6/276特征x射线的产生示意图2021/6/277特征x射线的命名主要考虑以下几点:①某层电子被激发,称某系激发。如k层电子被激发,称k系激发。②某受激层电子空穴被外层电子填充后所产生的x射线辐射,称某系辐射、某系谱线或某线系。如外层电子填k层的空穴后所产生的特征x射线,称k系辐射、k系谱线或k线系。③当电子填空穴前处于近邻、次近邻、…、电子层,则在对应谱线名称下方标上αβγ…,如L、M层电子跃至k层,对应称Kα、Kβ系线。M层电子跃至L层,对应称L系线。④当电子填空穴前处于某电子层的各亚层电子层,则在该谱线名称的下方再标上数字。如L层有3个亚电子层,根据量子理论,L1能级稳定,不产生电子的跃迁,则电子从Lα2、Lα1分能级跃至K能级,对应产生Kα1、Kα2谱线。2021/6/2781.4x射线与物质的相互作用

X射线有较强的穿透能力,但由于物质对x射线存在各种作用,使得x射线被吸收并散射,x射线能量转变为其他形式的能量,最后将使x射线强度显著减弱,只有一小部分透射线保持原有能量,沿原方向直接穿过并继续传播透射X射线相干的非相干的散射X射线热能吸收荧光X射线俄歇效应

光电效应2021/6/2791.4.1x射线的透射X射线透过物质后强度的减弱是x射线光子数的减少,而不是x射线能量的减少。所以,透射x射线能量和传播方向基本与入射线相同。X射线与物质的相互作用实质上是x射线与原子的相互作用,其基本原理是原子中受束缚电子被x射线电磁波的震荡电场加速。短波长的x射线易穿过物体,长波长x射线易被物体吸收。2021/6/27101.4.2X射线的吸收物质对X射线的吸收指的是X射线能量在通过物质时转变为其它形式的能量,X射线发生了能量损耗。物质对X射线的吸收主要是由原子内部的电子跃迁而引起的。这个过程中除部分转变为热量之外,还发生X射线的光电效应和俄歇效应。光电效应以X光子激发原子所发生的激发和辐射过程。被击出的电子称为光电子,辐射出的次级标识X射线称为荧光X射线。产生光电效应,X射线光子波长必须小于吸收限λk。俄歇效应原子在入射X射线光子或电子的作用下失掉K层电子,处于K激发态;当L层电子填充空位时,放出E-E能量,产生两种效应:(1)荧光X射线;(2)将能量转移给另一个外层电子,并使之发射出来,该电子即为俄歇电子。2021/6/2711荧光x射线波长决定于原子的能极差。从荧光x射线的特征波长可以查明被激发原子是哪种元素,这就是x射线荧光光谱技术(XRF)。产生俄歇电子除用x射线照射外,还可以用电子束、离子束轰击。俄歇电子的能量分布曲线称为俄歇电子能谱。俄歇电子能谱反映了该电子从属的原子以及原子的结构状态特征,因此,俄歇电子能谱分析(AES)可以分析固体表面化学组成元素的分布,可用于精确测量包括价电子在内的化学键能,也可以测量化学键之间微细的能量差。扫描俄歇电子能谱仪还可观测被测表面的形貌。2021/6/27121.4.3X射线的散射X射线穿过物质时,物质的原子可能使x射线光子偏离原射线方向,即发生散射。X射线的散射现象可分为相干散射和非相干散射两种类型。按经典电动力学,一个质量为m的电子,对一束偏振x射线的散射波强度为质子的质量为电子的1846倍,相应的散射强度也只有电子的1/(1846)2,因此一般仅考虑原子核外的电子对x射线的散射作用。2021/6/2713相干散射

X射线被物质中的电子散射,在各方向产生与入射X射线同频率的电磁波。新的散射波之间发生的干涉现象称为相干散射。

X射线衍射技术的基础

衍射现象是散射的一种特殊表现,是相干散射波互相干涉加强的结果。2021/6/2714非相干散射当入射x射线光子与原子中束缚较弱的电子(如外层电子)发生非弹性碰撞时,光子消耗一部分能量作为电子的动能,于是电子撞出离子之外,同时发出波长变长、能量降低的非相干散射或康普顿散射。因其分布在各方向上,波长变长,相位与入射线之间也没有固定的关系,故不产生相互干涉,也就不能产生衍射,只会成为衍射谱的背底,给衍射分析工作带来干扰和不利的影响。2021/6/27152.X射线衍射2.1X射线衍射基本原理

X射线照射晶体,电子受迫振动产生相干散射。同一原子内各电子散射波相互干涉形成原子散射波。由于晶体内各原子呈周期排列,因而各原子散射波间存在固定的位相关系而产生干涉作用,在某些方向上发生相长干涉,即形成了衍射波。衍射的本质—晶体中相干散射波叠加。衍射方向为干涉时最大程度加强方向。2021/6/27162.2x射线衍射方程

衍射线的方向与晶胞大小和形状有关。决定晶体衍射方向的基本方程有劳厄方程和布拉格方程。前者以直线点阵为出发点,后者以平面点阵为出发点。这两个方程均反映衍射方向、入射线波长、点阵参数、入射角关系,都是规定衍射条件和衍射方向的方程,实质上是相同的,但劳厄方程需同时考虑三个方程,实际应用不便,下面仅以布拉格方程做介绍。2021/6/2717如图所示,设一束波长为λ的平行X射线以角度θ照射到晶体中晶面指数为(hkl)的各原子面上,各原子面产生反射。布拉格方程的导出任选两相邻面,反射线光程差δ=ML+LN=2dsinθ;干涉一致加强的条件为:δ=nλ即

2dsinθ=nλ—布拉格方程Bragg’slaw式中:n——任意正整数,称反射级数。为简便起见,用衍射指数hkl代替面网符合(nh、nk、nl),则得到简化布拉格方程,即2dsinθ=λ2021/6/27182.2x射线衍射数据2.2.1衍射方向

衍射方向可用布拉格角θ、衍射角2θ、衍射面间距dhkl及衍射指数hkl来表征。衍射角2θ对应于所使用的x射线波长,波长不同,2θ也不同,它可以由实验直接测得。dhkl用于表明衍射是由面间距为dhkl的衍射面产生的,对于不同波长的x射线,dhkl值是确定的,故在标准物相的衍射数据中用这一表示法。但当晶体结构因故产生形变时,其面间距dhkl将偏离原值,但衍射指数hkl不变,故用衍射指数hkl表示衍射方向比较精确,特别是在比较不同样品同一衍射面的衍射数据时,常用衍射指数hkl表达2021/6/27192.2.2衍射强度实际晶体总是存在结构上的缺陷,而且入射x射线有一定的宽度和发散度,因而在与入射线成准确的布拉格角θ处发生衍射,在该角度附近±θ内也有衍射存在。在衍射强度分布曲线中,某一衍射线则表现为有一定宽度的衍射峰衍射线的总强度相当于其衍射峰的面积,称为积分强度或累积强度。e—电子电荷m—电子质量I0—入射x射线强度λ—x射线波长R—衍射线的路程N—单位体积内的晶胞数Phkl—多重性因子Fhkl—结构因子Θ—布拉格角e-2m—温度因子μ—线性系数V—参与衍射的体积衍射线的强度反映了晶体物质内微观结构的信息,因此通过衍射强度的分析,能够最终完成晶体结构的分析。2021/6/27202.3衍射线分离2.3.1Kα双线宽化效应及分离实验中常用的Kα

辐射线,实际是包含了Kα1

与Kα2

双线,导致衍射谱线增宽。当衍射谱线Kα

双线完全分开时,可直接利用Kα1

线形,否则必须进行Kα

双线分离。即使无物理宽化因素的标准样品,其衍射线形也往往不能将双线分开,实测曲线宽度是Kα

双线的增宽效果。为了得到单一Kα1

衍射线形,需要进行Kα

双线分离工作。2021/6/2721Kα

双线分离的常用方法是Rechinger法,这种方法假定Kα

双线的衍射线形相似且底宽相等,谱线Kα1

与Kα2

的峰值强度比值为2:1。当辐射线Kα1

与Kα2的波长存在Δλ的偏差时,则衍射角2θ

的分离度为图中为实测X射线衍射谱线,可见其衍射峰形很不对称。经过Kα

双线分离后的衍射谱线,表明其Kα1

峰形比较对称。2021/6/27222.3.2几何宽化与物理宽化的分离完成对被测样品及标样的实测衍射谱线Kα双线分离后,利用它们的Kα1

线形,进行几何宽化线形与物理宽化线形的分离工作。它们的卷积关系用实验测得的h(x)及g(x)数据,通过傅里叶变换求解卷积关系,可以精确求解物理宽化线形数据f(x)及物理宽度β,只是计算工作量相当大而繁,必须借助计算机技术。2021/6/2723为了避开必须求解f(x)的困难,另一途径便是直接假设各宽化线形为某种已知函数,这便是所谓近似函数法。从数学角度,近似函数法似乎不很严谨,但它确实因绕开了求解物理宽化线形函数的困难,而使工作大为简化。必须强调,标样的选择十分关键。利用没有任何物理宽化因素的标准样品,采用与待测试样完全相同的实验条件,测得标样的衍射线形,并以其峰宽定为仪器宽度。2021/6/27242.3.3细晶宽化与显微畸变宽化的分离当试样只包括细晶宽化时,将物理宽度β代入D=λ/(βcosθ)求解亚晶块尺寸D。对于只包括显微畸变的情况,将β代入ε=βcotθ/4即可求出显微畸变ε值。判断细晶宽化或显微畸变宽化,主要是观察试样不同衍射级的衍射线物理宽度β。如果βcosθ为常数就说明线宽是由细晶所引起的如果βcotθ为常数时说明主要是由显微畸变引起的如果二者都不为常数则说明两种宽化因素都存在2021/6/27253.X射线物相定性分析粉末晶体X射线物相定性分析是根据晶体对X射线的衍射特征即衍射线的方向及强度来达到鉴定结晶物质的。一旦样品和已知物相的衍射数据或图谱对比后相吻合,则表明待测物相与已知物相是同一相。原因:

1)每一种结晶物质都有各自独特的化学组成和晶体结构,不会存在两种结晶物质的晶胞大小、质点种类和质点在晶胞中的排列方式完全一致的物质;2)结晶物质有自己独特的衍射花样。(d、θ和I);

3)多种结晶状物质混合或共生,它们的衍射花样也只是简单叠加,互不干扰,相互独立。(混合物物相分析)3.1定性分析原理2021/6/2726X射线物相分析原理:任何结晶物质都有其特定的化学组成和结构参数(包括点阵类型、晶胞大小、晶胞中质点的数目及坐标等)。当x射线通过晶体时,产生特定的衍射图形,对应一系列特定的面间距d和相对强度Ⅰ/Ⅰ1值。其中d与晶胞形状及大小有关,Ⅰ/Ⅰ1与质点的种类及位置有关。所以,任何一种结晶物质的衍射数据d和Ⅰ/Ⅰ1是其晶体结构的必然反映。将实验测定的衍射花样与已知标准物质的衍射花样比较,从而判定未知物相。

混合试样物相的X射线衍射花样是各个单独物相衍射花样的简单迭加,根据这一原理,就有可能把混合物物相的各个物相分析出来。2021/6/27273.2物相定性分析过程物相定性分析就是确定试样中所含的物相。试样中所含物相的数目不同,物相定性分析情况也有所不同。在进行物相鉴定时,考虑到实验误差及试样与标准样品的差异,允许实测的衍射数据与索引或卡片数据有一定的误差。要求d值尽量符合(误差约为±1%);相对强度误差可较大,至少变化趋势或强弱次序应尽量相符。另外,实测数据与索引或卡片标准数据对比时,应注意保持整体观念,因为并不是一条衍射线代表一个物相,而是一套特定的“d-Ⅰ/Ⅰ1”数据才代表某一物相,因此,一般情况下,若有一条强线完全对不上,则可以否定该物相的存在。2021/6/2728常规物相定性分析的步骤如下:(1)实验

用粉末照相法或粉末衍射仪法获取被测试样物相的衍射花样或图谱。(2)通过对所获衍射图谱或花样的分析和计算,获得各衍射线条的2θ,d及相对强度大小I/I1。在这几个数据中,要求对2θ和d

值进行高精度的测量计算,而I/I1对精度要求不高。目前,一般的衍射仪均由计算机直接给出所测物相衍射线条的d值。2021/6/2729(3)使用检索手册,查寻物相PDF卡片号

根据需要使用字母检索、Hanawalt检索或Fink检索手册,查寻物相PDF卡片号。一般采用Hanawalt检索,用最强线d值判定卡片所处的大组,用次强线d值判定卡片所在位置,最后用8条强线d值检验判断结果。若8强线d值均已基本符合,则可根据手册提供的物相卡片号在卡片库中取出此PDF卡片。(4)若是多物相分析,则在(3)步完成后,对剩余的衍射线重新根据相对强度排序,重复(3)步骤,直至全部衍射线能基本得到解释。2021/6/27303.3物相定性分析所应注意问题

(1)一般在对试样分析前,应尽可能详细地了解样品的来源、化学成分、工艺状况,仔细观察其外形、颜色等性质,为其物相分析的检索工作提供线索。(2)尽可能地根据试样的各种性能,在许可的条件下将其分离成单一物相后进行衍射分析。(5)特别要重视低角度区域的衍射实验数据,因为在低角度区域,衍射所对应d值较大的晶面,不同晶体差别较大,衍射线相互重叠机会较小。2021/6/2731(6)在进行多物相混合试样检验时,应耐心细致进行检索,力求全部数据能合理解释,但有时也会出现少数衍射线不能解释的情况,这可能由于混合物相中,某物相含量太少,只出现一、二级较强线,以致无法鉴定。(7)在物相定性分析过程中,尽可能地与其它的相分析结合起来,互相配合,互相印证。

2021/6/27324.X射线物相定量分析4.1定量分析原理物相的定量分析是用x射线衍射方法测定样品中各物相的相对含量(质量分数)。物相定量分析原理:每种物相的衍射线强度随其相含量的增加而提高,由强度值的计算可确定物相的含量。多相试样中各相的衍射强度随该相的含量增加而加强,但由于各种因素的影响,并不一定成线性的正比关系。进行物相定量分析时,对强度的测试及分析精度要求较高。2021/6/27334.2单一物相的衍射线强度在确定的实验条件下,对于一种物相的某一条衍射线而言,其衍射线强度:令则衍射强度公式可简化为可见,由于单相物质的线吸收系数µ是定值,所以衍射强度(I)与参与衍射体积(V)成线性关系2021/6/27344.3多相混合物中某相的衍射线强度对于由n个相组成的多相混合物,设第j相为待测相,假定该相参加衍射的体积为Vj,强度因子为Kj(C为物理常量),由该相产生的衍射线强度为:

待测相的含量通常用体积分数Vj或重量分数Wj表示。若多相试样的密度为

,第j相试样的密度为

j,Vj与Wj的关系为:2021/6/2735

多相试样的线吸收系数μ可用各组成相的质量吸收系数(μm)j表示:

待测相(第j相)的衍射线强度与其含量关系的普适公式为或对于多相混合试样而言,由于物质吸收的影响,多相物质中各相的吸收系数不同,从而使各相衍射强度与其含量不呈线性关系。这种由于基体吸收引起Ij与wj并不成线性关系的现象称为基体吸收效应,简称基体效应。2021/6/27364.4物相定量分析方法为了解决基体效应给x射线定量分析带来的不便,发展了各种定量分析方法

内标法 K值法(基体冲洗法)

外标法

绝热法无标样法其它新方法2021/6/27374.4.1内标法为了消除基体效应的影响,在试样中加入某种纯物质s相作为标准物质来帮助分析,以求得原试样内各物相含量的方法称为内标法。内标物应是原试样中没有的纯物质(如α-Al2O3、CaF2等)。化学性质稳定、成分和晶体结构简单,衍射线少而强,不与其它衍射线重叠;加入量原则上按参考物定量线与待测相定量线强度相近,一般以5~20%为宜。必须混合均匀。常用参考物:NaCl,CaF2,MgO,ZnO,Al2O3,quartz等在内标法中,待测相j相与基体M(M可以是单一的相,也可以由几个相组成)以及标准物s相共同组成一个多相混合物2021/6/2738方法概要:在被测的粉末试样中加入一种含量恒定的标准物质,混合均匀后制成复合试样,测量复合试样中待测相的某一衍射峰强度与内标物质某一衍射峰强度,根据两个强度之比来计算待测相的含量。公式推导:设被测试样由n个相组成,待测相为A,在试样中掺入内标物质S,混合均匀后制成复合试样。令:WA---A在被测试样中的重量百分数;

WA’---A在复合试样中的重量百分数;

WS---S在复合试样中的重量百分数;

WA=WA’/(1-WS);WA’=WA(1-WS)2021/6/2739根据X射线定量分析的普适公式,复合试样中A与S的衍射强度分别为:IA∕IS与WA成线性关系,K为其斜率,若K已知,测量复合试样中的IA与IS,即可计算出待测试样中A的含量WA2021/6/2740测绘定标曲线

配制一系列(3个以上)待测相A含量已知但数值各不相同的样品,向每个试样中掺入含量恒定的内标物S,混合均匀制成复合试样。在A相及S相的衍射谱中分别选择某一衍射峰为选测峰,测量各复合试样中的衍射强度IA与IS,绘制IA/IS~WA曲线,即为待测相的定标曲线实验步骤:石英(待测相)的重量分数W石英以萤石作内标物质的石英的定标曲线I石英/I萤石2021/6/2741(2)

制备复合试样

在待测样品中掺入与定标曲线中比例相同的内标物S制备成复合试样(3)

测试复合试样

在与绘制定标曲线相同的实验条件下测量复合试样中A相与S相的选测峰强度IA与IS。(4)

计算含量由待测样复合试样的IA/IS在事先绘制的待测相定标曲线上查出待测相A的含量WA。2021/6/2742内标法优点:原则上不受实验条件变化的影响,但保持一致更好;不受试样中陪伴相的种类和性质影响,工作曲线通用。因此在待测试样数目很多、各样品成分变化很大时或无法知道其它物相组成的情况下,使用该方法有利。适用于多晶体系甚至含非晶的体系内标法缺点:绘制工作曲线麻烦;每一相需要一条,多相多条;选择合适的内标物,并非任何条件都能办到;需要纯物质2021/6/27434.4.2k值法(基体清洗法)K值法是对内标法的改进,引入了常数k,所形成的定量分析法称k值法或基体清洗法(“清洗”掉基体效应的影响)。K值法与内标法的主要区别在于对比例常数K的处理方法不同。内标法的比例常数K与内标物质含量有关,而K值法的比例常数K与内标物质含量无关参比强度(k):比较不同晶体物质衍射能力的参数,数值上为以刚玉作为标准,将各种晶体与刚玉以1:1混合,某晶体与刚玉定量线强度之比2021/6/2744设待测试样中含有n个相,要测其中j相的含量(Wj)在待测样品中掺入内标物质S制备成复合试样。复合试样中内标物质S相的含量为Ws,j相的含量变为W'j。复合试样中选测的j相的某条衍射线强度为IA,选测的S相的某条衍射线强度为IS

,可分别表示为:公式推导2021/6/2745则

Kjs仅与j相及S相的密度、X射线波长(

)及选测衍射峰的衍射角(2

)有关,与相的含量无关。在两相衍射线强度Ij和IS所对应的衍射角2θj和2θS一定的情况下Kjs为常数。测定出Kjs后,就可求出W’j后,再利用关系式W’j=Wj/(1-Ws)即可求出Wj。2021/6/2746实验步骤:(1)测定Kjs值制备一个待测相(j相)和内标物质(S相)重量为1:1的两相复合试样,测量此复合试样中j及S相某选测峰的衍射强度Ij和IS。因为此复合试样中W’j/Ws=1,故Kjs=Ij/IS(2)制备待测相的复合试样向待测试样中掺入与测Kjs时相同的内标物质(掺入量不限),混合均匀,即为待测相的复合试样

2021/6/2747(3)测量待测相的复合试样所选测的衍射峰及实验条件与测定Kjs时完全相同(4)计算待测相的含量由测量待测相的复合试样所得的Ij和IS、S相的掺入量Ws、预先测出的Kjs计算出W’j

,再利用关系式W’j=Wj/(1-Ws)即可求出Wj。2021/6/2748K值法的优点:

K值与待测相和内标物质的含量无关。因此可以任意选取内标物质的含量只要配制一个由待测相和内标物质组成的混合试样便可测定K值,因此不需要测绘定标曲线K值具有常数意义,只要待测相、内标物质、实验条件相同,无论待测相的含量如何变化,都可以使用一个精确测定的K值2021/6/27494.4.3外标法(直接分析法、纯品标准法)外标法是用对比试样中待测的第j相的某条衍射线和纯j相(外标物)的同一条衍射线的强度来获得第j相含量的方法。(原则上只适于含两相物质系统的含量测试)设试样中两相的质量吸收系数分别为μm1和μm2,两相的质量百分数分别为X1和X2,那么,该试样的质量吸收系数可写作:

μm=μm1X1+μm2X22021/6/2750X1+X2=1以I10表示纯1相的某衍射线强度,此时,X2=0,X1=1则:

2021/6/2751两相系统中只要已知各相的质量吸收系数,在实验测试条件严格一致的情况下,分别测试得某相的一衍射线强度及对应的该纯相相同衍射线强度,即可获得待测试样中该相的含量。2021/6/27524.5物相定量分析应注意的问题混合物相x射线定量分析方法的根本依据在于衍射强度与含量成一定的函数关系。但由于衍射强度易受各方面条件的影响,因而在进行定量分析时应注意减少各种因素影响。2021/6/27534.5.1标样的选择X射线衍射定量分析方法中,标样的选择是定量分析的一项重要工作,通常,标样的选择应注意以下几点:

1.具有良好的稳定性。使用长期放置不氧化、不吸水、不分解、不腐蚀、不与样品起化学反应且无毒性的物质。

2.在常用k辐射(Cukα、Fekα、Cokα等)下,不产生k系荧光,以免增加背底而影响微量相的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论