江南大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第1页
江南大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第2页
江南大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第3页
江南大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第4页
江南大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页江南大学《机器学习与深度学习》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在处理文本分类任务时,除了传统的机器学习算法,深度学习模型也表现出色。假设我们要对新闻文章进行分类。以下关于文本分类模型的描述,哪一项是不正确的?()A.循环神经网络(RNN)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU)能够处理文本的序列信息B.卷积神经网络(CNN)也可以应用于文本分类,通过卷积操作提取文本的局部特征C.Transformer架构在处理长文本时性能优于RNN和CNN,但其计算复杂度较高D.深度学习模型在文本分类任务中总是比传统机器学习算法(如朴素贝叶斯、支持向量机)效果好2、在进行机器学习模型训练时,过拟合是一个常见的问题。过拟合意味着模型在训练数据上表现很好,但在新的、未见过的数据上表现不佳。为了防止过拟合,可以采取多种正则化方法。假设我们正在训练一个神经网络,以下哪种正则化技术通常能够有效地减少过拟合?()A.增加网络的层数和神经元数量B.在损失函数中添加L1正则项C.使用较小的学习率进行训练D.减少训练数据的数量3、在处理自然语言处理任务时,词嵌入(WordEmbedding)是一种常用的技术。假设我们要对一段文本进行情感分析。以下关于词嵌入的描述,哪一项是错误的?()A.词嵌入将单词表示为低维实数向量,捕捉单词之间的语义关系B.Word2Vec和GloVe是常见的词嵌入模型,可以学习到单词的分布式表示C.词嵌入向量的维度通常是固定的,且不同单词的向量维度必须相同D.词嵌入可以直接用于文本分类任务,无需进行进一步的特征工程4、假设正在开发一个智能推荐系统,用于向用户推荐个性化的商品。系统需要根据用户的历史购买记录、浏览行为、搜索关键词等信息来预测用户的兴趣和需求。在这个过程中,特征工程起到了关键作用。如果要将用户的购买记录转化为有效的特征,以下哪种方法不太合适?()A.统计用户购买每种商品的频率B.对用户购买的商品进行分类,并计算各类别的比例C.直接将用户购买的商品名称作为特征输入模型D.计算用户购买商品的时间间隔和购买周期5、在进行迁移学习时,以下关于迁移学习的应用场景和优势,哪一项是不准确的?()A.当目标任务的数据量较少时,可以利用在大规模数据集上预训练的模型进行迁移学习B.可以将在一个领域学习到的模型参数直接应用到另一个不同但相关的领域中C.迁移学习能够加快模型的训练速度,提高模型在新任务上的性能D.迁移学习只适用于深度学习模型,对于传统机器学习模型不适用6、假设正在训练一个深度学习模型,但是训练过程中出现了梯度消失或梯度爆炸的问题。以下哪种方法可以缓解这个问题?()A.使用正则化B.调整学习率C.使用残差连接D.减少层数7、某机器学习项目需要对文本进行主题建模,以发现文本中的潜在主题。以下哪种方法常用于文本主题建模?()A.潜在狄利克雷分配(LDA)B.非负矩阵分解(NMF)C.概率潜在语义分析(PLSA)D.以上方法都常用8、在进行特征选择时,有多种方法可以评估特征的重要性。假设我们有一个包含多个特征的数据集。以下关于特征重要性评估方法的描述,哪一项是不准确的?()A.信息增益通过计算特征引入前后信息熵的变化来衡量特征的重要性B.卡方检验可以检验特征与目标变量之间的独立性,从而评估特征的重要性C.随机森林中的特征重要性评估是基于特征对模型性能的贡献程度D.所有的特征重要性评估方法得到的结果都是完全准确和可靠的,不需要进一步验证9、在机器学习中,模型的可解释性是一个重要的方面。以下哪种模型通常具有较好的可解释性?()A.决策树B.神经网络C.随机森林D.支持向量机10、假设正在开发一个用于图像分割的机器学习模型。以下哪种损失函数通常用于评估图像分割的效果?()A.交叉熵损失B.均方误差损失C.Dice损失D.以上损失函数都可能使用11、在使用深度学习进行图像分类时,数据增强是一种常用的技术。假设我们有一个有限的图像数据集。以下关于数据增强的描述,哪一项是不正确的?()A.可以通过随机旋转、翻转、裁剪图像来增加数据的多样性B.对图像进行色彩变换、添加噪声等操作也属于数据增强的方法C.数据增强可以有效地防止模型过拟合,但会增加数据标注的工作量D.过度的数据增强可能会导致模型学习到与图像内容无关的特征,影响模型性能12、某研究需要对音频信号进行分类,例如区分不同的音乐风格。以下哪种特征在音频分类中经常被使用?()A.频谱特征B.时域特征C.时频特征D.以上特征都常用13、某研究需要对生物信息数据进行分析,例如基因序列数据。以下哪种机器学习方法在处理生物信息学问题中经常被应用?()A.隐马尔可夫模型B.条件随机场C.深度学习模型D.以上方法都常用14、在构建一个图像识别模型时,需要对图像数据进行预处理和增强。如果图像存在光照不均、噪声和模糊等问题,以下哪种预处理和增强技术组合可能最为有效?()A.直方图均衡化、中值滤波和锐化B.灰度变换、高斯滤波和图像翻转C.色彩空间转换、均值滤波和图像缩放D.对比度拉伸、双边滤波和图像旋转15、在一个图像识别任务中,数据存在类别不平衡的问题,即某些类别的样本数量远远少于其他类别。以下哪种处理方法可能是有效的?()A.过采样少数类样本,增加其数量,但可能导致过拟合B.欠采样多数类样本,减少其数量,但可能丢失重要信息C.生成合成样本,如使用SMOTE算法,但合成样本的质量难以保证D.以上方法结合使用,并结合模型调整进行优化二、简答题(本大题共3个小题,共15分)1、(本题5分)解释如何使用机器学习进行文本摘要生成。2、(本题5分)简述机器学习中联邦学习的框架和应用。3、(本题5分)机器学习在地球科学中的应用有哪些?三、论述题(本大题共5个小题,共25分)1、(本题5分)探讨深度学习中的Transformer架构在自然语言处理中的应用。分析其优势及对未来语言处理的影响。2、(本题5分)分析机器学习在教育评估中的应用,如学生成绩预测、学习行为分析等,讨论其对教育教学的改进。3、(本题5分)分析机器学习算法中的稀疏表示。论述稀疏表示的基本原理和应用场景,如图像压缩、信号处理等。探讨稀疏表示的优缺点及改进方法。4、(本题5分)探讨机器学习在制造业中的应用,如生产过程优化、产品质量检测等,分析其对制造业转型升级的推动作用。5、(本题5分)阐述机器学习中的模型解释方法。分析局

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论