题型22 5类圆锥曲线解题技巧(焦点三角形、阿基米德三角形、焦点弦、中点弦、弦长问题(硬解定理-万能公式))(解析版)_第1页
题型22 5类圆锥曲线解题技巧(焦点三角形、阿基米德三角形、焦点弦、中点弦、弦长问题(硬解定理-万能公式))(解析版)_第2页
题型22 5类圆锥曲线解题技巧(焦点三角形、阿基米德三角形、焦点弦、中点弦、弦长问题(硬解定理-万能公式))(解析版)_第3页
题型22 5类圆锥曲线解题技巧(焦点三角形、阿基米德三角形、焦点弦、中点弦、弦长问题(硬解定理-万能公式))(解析版)_第4页
题型22 5类圆锥曲线解题技巧(焦点三角形、阿基米德三角形、焦点弦、中点弦、弦长问题(硬解定理-万能公式))(解析版)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学精编资源2/2题型225类圆锥曲线解题技巧(焦点三角形、阿基米德三角形、焦点弦、中点弦、弦长问题(硬解定理-万能公式)技法技法01圆锥曲线中焦点三角形的应用及解题技巧技法02圆锥曲线中阿基米德三角形的应用及解题技巧技法03圆锥曲线中焦点弦的应用及解题技巧技法04圆锥曲线中中点弦的应用及解题技巧技法05圆锥曲线中弦长问题(硬解定理-万能公式)的应用及解题技巧技法01圆锥曲线中焦点三角形的应用及解题技巧圆锥曲线的焦点三角形及其相关计算圆锥曲线的焦点三角形及其相关计算是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习知识迁移椭圆焦点三角形主要结论在ΔPF1F2中,记∠F1PF2=θ,椭圆定义可知:

(1).PF1+双曲线焦点三角形主要结论如图,F1、F2是双曲线的焦点,设P为双曲线上任意一点,记∠F1例1-1.(2023·全国·统考高考真题)设为椭圆的两个焦点,点在上,若,则(

)A.1 B.2 C.4 D.5【法一】因为,所以,从而,所以.【法二】因为,所以,由椭圆方程可知,,所以,又,平方得:,所以.例1-2.(全国·高考真题)设,为双曲线的两个焦点,点P在双曲线上,且满足,则的面积为(

)A. B.2 C. D.1【法一】△PF1【法二】设,,为双曲线的两个焦点,点P在双曲线上,,,,,,的面积为.故选:D1.(上海·高考真题)已知、是椭圆(>>0)的两个焦点,为椭圆上一点,且.若的面积为9,则=.【答案】3【详解】设椭圆的焦距为,则.由椭圆定义知,由题意知,,则,则,即,所以.2.(2023·河南开封·统考三模)已知点是椭圆上一点,椭圆的左、右焦点分别为、,且,则的面积为(

)A.6 B.12 C. D.【答案】C【分析】设,,由椭圆定义得,由余弦定理求出,从而利用三角形面积公式求出答案.【详解】由椭圆,得,,.

设,,∴,在中,由余弦定理可得:,可得,得,故.故选:C.3.(全国·高考真题)已知、为双曲线C:的左、右焦点,点P在C上,∠P=,则A.2 B.4 C.6 D.8【答案】B【详解】本试题主要考查双曲线的定义,考查余弦定理的应用.由双曲线的定义得①,又,由余弦定理②,由①2-②得,故选B.4.(2023·全国·高三专题练习)设,是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于(

)A.24 B. C. D.30【答案】A【分析】先利用题给条件及双曲线定义求得的三边长,进而求得的面积【详解】由,可得又是是双曲线上的一点,则,则,,又则,则则的面积等于故选:A技法02圆锥曲线中阿基米德三角形的应用及解题技巧阿基米德三角形问题及其相关计算阿基米德三角形问题及其相关计算是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习.知识迁移椭圆中的阿基米德三角形设椭圆C:x2a2+y2b2=1a>b>0的弦为AB,过A,B两点做椭圆切线,交于Q点,称△ABQ为阿基米德三角形,则有:

性质1:弦AB绕着定点Pm,0转动时,则其所对顶点Q落在直线x=a2m上.

其中,当P点为左(右双曲线中的阿基米德三角形设双曲线C:x2a2-y2b2=1a,b>0的弦为AB,过A,B两点做双曲线切线,交于Q点,称△ABQ为阿基米德三角形,则有:

性质1:弦AB绕者定点Pm,0转动时,则其所对顶点Q落在直线x=a2m上.

其中,当P点为左(右)抛物线中的阿基米德三角形抛物线的弦为AB,过A,B阿基米德三角形底边上的中线平行于抛物线的轴若阿基米德三角形的底边即弦AB过抛物线内的定点C,则另一顶点Q的轨迹为一条直线若直线l与抛物线没有公共点,以l上的点为顶点的阿基米德三角形的底边过定点(若直线l方程为:ax+by+c=底边为a的阿基米德三角形的面积最大值为a3若阿基米德三角形的底边过焦点,顶点Q的轨迹为准线,且阿基米德三角形的面积最小值为p在阿基米德三角形中,∠AF⋅抛物线上任取一点I(不与A,B重合),过I作抛物线切线交QA,QB于S,T,连接AI,BI,则△例2.(2022·全国·高三专题练习)过抛物线的焦点作抛物线的弦,与抛物线交于,两点,分别过,两点作抛物线的切线,相交于点,又常被称作阿基米德三角形.的面积的最小值为(

)A. B. C. D.设,,由题意可得直线AB的斜率不为0,因为直线AB过焦点,所以设直线AB的方程;联立得,所以,由抛物线的性质可得过点,的抛物线的切线方程为:,联立得,,即.点到直线的距离,当且仅当时取到最小值.故选:C.1.(2023秋·江西上饶·高三统考期末)(多选)若,,点满足,记点的轨迹为曲线,直线,为上的动点,过点作曲线的两条切线,,切点为,,则下列说法中正确的是(

)A.的最小值为B.直线恒过定点C.的最小值为0D.当最小时,直线的方程为【答案】ABC【分析】由题知,点的轨迹曲线为,对于A,即可判断;对于B,设,根据条件得到直线,由,得,即可判断;对于C,根据条件得到,为全等的等腰直角三角形,得,即可判断;对于D,求出四边形的面积,得到A和B的坐标,即可判断.【详解】设,因为,,点满足,所以,即,化简得,所以点的轨迹曲线为,圆心为,半径.对于A,因为直线,为上的动点,过点作曲线的两条切线,,切点为,,设圆心到直线l的距离为d,所以,故A正确;对于B,设,则,所以,以为圆心,为半径的圆的方程为,①因为为,②由①,②相减,得直线,即,由,得,所以直线恒过定点,故B正确;对于C,因为,,根据几何性质可知,,在中,,因为,所以,所以此时,为全等的等腰直角三角形,所以,,即有,所以,所以的最小值为0,故C正确;对于D,因为四边形的面积为,此时四边形为正方形,,所以直线的方程为,故D错误.故选:ABC.2.(2023·全国·高三专题练习)已知抛物线的焦点到原点的距离等于直线的斜率.(1)求抛物线C的方程及准线方程;(2)点P是直线l上的动点,过点P作抛物线C的两条切线,切点分别为A,B,求面积的最小值.【答案】(1)抛物线方程为,其准线方程为;(2)最小值为.【分析】(1)求出直线斜率可得即可写出抛物线方程及准线方程;(2)利用切线求出直线的方程,联立抛物线方程,求出弦长,再有点到直线的距离即可求出三角形面积,利用二次函数求最值即可.【详解】(1)由题意,,即,可知抛物线方程为,其准线方程为.(2),则切线:,即;同理:.分别代入点可得,对比可知直线的方程为:.(即切点弦方程)联解,可知,点到直线的距离为,因此,,而,故.当且仅当,即时,的最小值为.【点睛】关键点点睛:涉及三角形面积问题,一般可利用直线联立抛物线方程求出弦长,再由点到直线距离求出高,即可表示三角面积,属于中档题.3.(2023·全国·高三专题练习)抛物级的焦点到直线的距离为2.(1)求抛物线的方程;(2)设直线交抛物线于,两点,分别过,两点作抛物线的两条切线,两切线的交点为,求证:.【答案】(1);(2)证明见解析【分析】(1)利用抛物线的定义求出即可得出结论;(2)联立直线和抛物线的方程,得出韦达定理,设切线的斜率为,切线的斜率为,点坐标为,利用已知条件对函数求导得出切线的斜率,写出切线方程,求出两切线的交点坐标,利用,即可得出结论.【详解】(1)由题意知:,则焦点到直线的距离为:,所以抛物线的方程为:;(2)证明:把直线代入消得:,又,利用韦达定理得,由题意设切线的斜率为,切线的斜率为,点坐标为,由(1)可得:,则,所以,则切线的方程为:,切线的方程为:,则,利用韦达定理化简整理得:,把代入整理得:,则,,则【点睛】本题主要考查了利用定义求抛物线的方程,直线与抛物线应用.做这道题的时候要注意,利用韦达定理,得出两根的关系,设出两切线的交点,认真计算.属于中档题.技法03圆锥曲线中焦点弦的应用及解题技巧圆锥曲线的焦点弦及其相关计算圆锥曲线的焦点弦及其相关计算是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习.知识迁移椭圆的斜率式焦点弦长公式(1)为椭圆的左、右焦点,过(或)斜率为的直线与椭圆交于两点,则(2)为椭圆的下、上焦点,过(或斜率为的直线与椭圆交于两点,则双曲线的斜率式焦点弦长公式(1)F1,F2为双曲线C:x2a2-y2b(2)A,B在异支弦,AB=2ab

(2)F1,F2为双曲线C:y2a2-x2b2=1a>0,b>0椭圆的倾斜角式焦点弦长公式

(1)F1,F2为椭圆C:x2a2+y2b2=1a>b>0的左、右焦点,过F1倾斜角为θ的直线l与椭圆C交于A,B两点,则AB=2ab2a双曲线的倾斜角式焦点弦长公式

(1)F1,F2为双曲线C:x2a2-y2b2=1a>0,b>0的左、右焦点,过F1倾斜角为θ的直线l与双曲线交于A,B两点,则AB=2ab2a2-c2抛物线的的倾斜角式焦点弦长公式

(1)焦点在x轴上,AB=2psin2θ

(2)焦点在例3-1.(2022·全国·高三专题练习)过双曲线的右焦点作倾斜角为直线,交双曲线于两点,求弦长.由双曲线得,又所以.例3-2.(山东·统考高考真题)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=.【法一】先求出倾斜角,代入AB=【法二】解得

所以【法三】设,则,过分别作准线的垂线,设垂足分别为如图所示.故答案为:1.(全国·高考真题)已知直线与抛物线相交于A、B两点,F为C的焦点,若,则k=A. B. C. D.【答案】D【详解】将y=k(x+2)代入y2=8x,得k2x2+(4k2-8)x+4k2=0.设交点的横坐标分别为xA,xB,则xA+xB=-4,①xA·xB=4.又|FA|=xA+2,|FB|=xB+2,|FA|=2|FB|,∴2xB+4=xA+2.∴xA=2xB+2.②∴将②代入①得xB=-2,xA=-4+2=-2.故xA·xB==4.解之得k2=.而k>0,∴k=,满足Δ>0.故选D.2.(2023·全国·统考高考真题)(多选)设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则(

).A. B.C.以MN为直径的圆与l相切 D.为等腰三角形【答案】AC【分析】先求得焦点坐标,从而求得,根据弦长公式求得,根据圆与等腰三角形的知识确定正确答案.【详解】A选项:直线过点,所以抛物线的焦点,所以,则A选项正确,且抛物线的方程为.B选项:设,由消去并化简得,解得,所以,B选项错误.C选项:设的中点为,到直线的距离分别为,因为,即到直线的距离等于的一半,所以以为直径的圆与直线相切,C选项正确.D选项:直线,即,到直线的距离为,所以三角形的面积为,由上述分析可知,所以,所以三角形不是等腰三角形,D选项错误.故选:AC.

3.(2023·北京·人大附中校考三模)已知抛物线的焦点为F,过点F的直线与该抛物线交于A,B两点,,AB的中点横坐标为4,则.【答案】【分析】根据抛物线定义有,结合已知即可求参数p的值.【详解】由抛物线定义知:,而AB的中点横坐标为4,即,所以,即.故答案为:技法04圆锥曲线中中点弦的应用及解题技巧圆锥曲线的中点弦及其相关计算圆锥曲线的中点弦及其相关计算是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习.知识迁移椭圆中点弦斜率公式

(1)若Mx0,y0为椭圆x2a2+kAB.kOM=-b2a2=e2-1

(2)若MxkAB.双曲线的中点弦斜率公式

(1)若Mx0,y0为双曲线x2a2-y2b2=1弦AB(AB不平行y轴)的中点,则

kAB⋅kOM=b2a2=3.抛物线的中点弦斜率公式

(1)若Mx0,y0为抛物线y2=2px弦AB(AB不平行y轴)的中点,则kAB=py0

(2)若Mx0,y0为抛物线4.中点弦斜率拓展在椭圆x2a2+y2b2=1中,以Px0,y0为中点的弦所在直线的斜率k=-b2x0a2y0;

在双曲线x5.椭圆其他斜率形式拓展椭圆的方程为(a>b>0),为椭圆的长轴顶点,P点是椭圆上异于长轴顶点的任一点,则有椭圆的方程为(a>b>0),为椭圆的短轴顶点,P点是椭圆上异于短轴顶点的任一点,则有椭圆的方程为(a>b>0),过原点的直线交椭圆于两点,P点是椭圆上异于两点的任一点,则有点差法妙解中点弦问题

若设直线与圆锥曲线的交点(弦的端点)坐标为Ax将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。

(1)设点:若Ax1,y1,Bx2,y2是椭圆x2a2+y2b2=1a>b>0上不重合的两点,则

x12a2+y1化简可得y1+y例4.(全国·高考真题)已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为A.+=1 B.+=1C.+=1 D.+=1【法一】kAB.kOM=-b2a2,解得b2【法二】设、,所以,运用点差法,所以直线的斜率为,设直线方程为,联立直线与椭圆的方程,所以;又因为,解得.1.(重庆·高考真题)直线与圆相交于两点,,弦的中点为,则直线的方程为.【答案】.【详解】设圆心,直线的斜率为,弦AB的中点为,的斜率为,则,所以由点斜式得.2.(江苏·高考真题)已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是A. B.C. D.【答案】D【分析】根据点差法得,再根据焦点坐标得,解方程组得,,即得结果.【详解】设双曲线的方程为,由题意可得,设,,则的中点为,由且,得,,即,联立,解得,,故所求双曲线的方程为.故选D.【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.3.(2022·全国·统考高考真题)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为.【答案】【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;【详解】[方法一]:弦中点问题:点差法令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以,即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:[方法二]:直线与圆锥曲线相交的常规方法解:由题意知,点既为线段的中点又是线段MN的中点,设,,设直线,,,则,,,因为,所以联立直线AB与椭圆方程得消掉y得其中,∴AB中点E的横坐标,又,∴∵,,∴,又,解得m=2所以直线,即4.(2023·全国·统考高考真题)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是(

)A. B. C. D.【答案】D【分析】根据点差法分析可得,对于A、B、D:通过联立方程判断交点个数,逐项分析判断;对于C:结合双曲线的渐近线分析判断.【详解】设,则的中点,可得,因为在双曲线上,则,两式相减得,所以.对于选项A:可得,则,联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故A错误;对于选项B:可得,则,联立方程,消去y得,此时,所以直线AB与双曲线没有交点,故B错误;对于选项C:可得,则由双曲线方程可得,则为双曲线的渐近线,所以直线AB与双曲线没有交点,故C错误;对于选项D:,则,联立方程,消去y得,此时,故直线AB与双曲线有交两个交点,故D正确;故选:D.5.(全国·高考真题)已知椭圆的离心率为,点在上(1)求的方程(2)直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.【答案】(1)

(2)【详解】试题分析:(Ⅰ)由求得,由此可得C的方程.(II)把直线方程与椭圆方程联立得,所以于是.试题解析:解:(Ⅰ)由题意有解得,所以椭圆C的方程为.(Ⅱ)设直线,,把代入得故于是直线OM的斜率即,所以直线OM的斜率与直线l的斜率乘积为定值.考点:本题主要考查椭圆方程、直线与椭圆及计算能力、逻辑推理能力.技法05圆锥曲线中弦长问题(硬解定理-万能公式)的应用及解题技巧圆锥曲线的弦长万能公式(硬解定理)及其相关计算圆锥曲线的弦长万能公式(硬解定理)及其相关计算是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习.知识迁移弦长公式若直线与圆雉曲线相交于两点,则弦长圆锥曲线弦长万能公式(硬解定理)设直线方程为:y=kx+b(特殊情况要对圆锥曲线的方程为:fx,y可化为ax设直线和曲线的两交点为Ax1,y1,Bx2,y2,AB

(2)若消去x,得ayAB例5.(2023·全国·高三专题练习)已知斜率为1的直线过椭圆的右焦点,交椭圆于两点,则弦的长为(

)A. B. C. D.【法一】硬解定理直接计算即可【法二】由椭圆得,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.1.(2023·内蒙古通辽·校考模拟预测)已知椭圆E:的离心率为,且过点.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论