重庆市2023-2024学年高一数学上学期第一次月考试题含解析_第1页
重庆市2023-2024学年高一数学上学期第一次月考试题含解析_第2页
重庆市2023-2024学年高一数学上学期第一次月考试题含解析_第3页
重庆市2023-2024学年高一数学上学期第一次月考试题含解析_第4页
重庆市2023-2024学年高一数学上学期第一次月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Page15高2026届高一(上)第一次月考数学试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试卷上作答无效.3.考试结束后,请将答题卡交回,试卷自行保存.满分150分,考试用时120分钟.一、单项选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,集合或,则()A. B. C. D.或【答案】B【解析】【分析】化简集合,利用交集的定义求解.【详解】化简集合,得,又集合或,由交集的定义可得,.

故选:B2.使得不等式“”成立的一个必要不充分条件是()A. B. C. D.【答案】C【解析】【分析】首先解出一元二次不等式,再根据集合的包含关系判断即可.【详解】由,即,解得,因为真包含于,所以使得不等式“”成立的一个必要不充分条件可以是.故选:C3.已知集合,集合且,则集合的子集个数为()A.4 B.8 C.16 D.32【答案】B【解析】【分析】求出集合及子集可得答案.【详解】由题意可得,故子集为,共有8个.故选:B.4.已知集合,集合,则()A.{或} B.C.{或} D.【答案】A【解析】【分析】先化简集合A,B,再利用集合的并集运算求解.【详解】解:因为或,所以或,故选:A5.命题,当时,有,则为()A.,当时,有B.,满足,但C.,满足,但D.以上均不正确【答案】B【解析】【分析】根据命题的否定的定义即可得到答案.【详解】根据命题的否定的任意变存在,存在变任意,结论相反,故为,满足,但,故选:B.6.“”是“不等式对任意的恒成立”的()条件A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】【分析】根据不等式恒成立,求实数的取值范围,再利用集合的包含关系,判断充分,必要条件.【详解】当时,对任意的恒成立,当时,则,解得:,故的取值范围为.故“”是的充分不必要条件.故选:A7.已知一元二次不等式的解集为,则的最大值为()A.-2 B.-1 C.1 D.2【答案】A【解析】【分析】先根据一元二次不等式的解集求参,再结合基本不等式求最值即可.【详解】的解集为,故为方程的两个根,且(当且仅当时等号成立).故选:A.8.为丰富学生的课外活动,学校开展了丰富的选修课,参与“数学建模选修课”的有169人,参与“语文素养选修课”的有158人,参与“国际视野选修课”的有145人,三项选修课都参与的有30人,三项选修课都没有参与的有20人,全校共有400人,问只参与两项活动的同学有多少人?()A30 B.31 C.32 D.33【答案】C【解析】【分析】先画出韦恩图,根据荣斥原理求解.【详解】画出维恩图如下:设:只参加“数学建模课”和“语文素养课”的有x人,只参加“数学建模课”和“国际视野课”的有y人,只参加“语文素养课”和“国际视野课”的有z人,则:,;故答案为:32人.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项式符合题目要求的.全部选对的得5分,有错选的得0分,部分选对的得2分)9.下列关于符号“”使用正确的有()A. B.C. D.【答案】BC【解析】【分析】根据元素与集合、集合与集合的关系判断即可.【详解】对于A:,故A错误;对于B:,,所以,故B正确;对于C:,故C正确;对于D:或,故D错误;故选:BC10.若,下列不等式一定成立有()A. B.C. D.【答案】AC【解析】【分析】利用作差法逐项判断.【详解】A项,,故正确;B项,,故错误;C项.,故正确;D项.,分母正负号不确定,故错误;故选:AC11.已知正实数,满足,下列说法正确的是()A.的最大值为2 B.的最小值为4C.的最小值为 D.的最小值为【答案】BCD【解析】【分析】利用基本不等式和解一元二次不等式可判断A,B,将代入,化简,利用基本不等式求解可判断C,利用基本不等式“1”的妙用可判断D.【详解】对于A,因为,即,解得,又因为正实数,,所以,则有,当且仅当时取得等号,故A错误;对于B,,即,解得(舍),当且仅当时取得等号,故B正确;对于C,由题可得所以,解得,,当且仅当即时取得等号,故C正确;对于D,,当且仅当时取得等号,故D正确,故选:BCD.12.对于一个非空集合,如果满足以下四个条件:①②③,若且,则④,若且,则就称集合为集合的一个“偏序关系”,以下说法正确的是()A.设,则满足是集合的一个“偏序关系”的集合共有3个B.设,则集合是集合的一个“偏序关系”C.设,则含有四个元素且是集合的“偏序关系”的集合共有6个D.是实数集的一个“偏序关系”【答案】ACD【解析】【分析】利用偏序关系的定义逐项判断.【详解】A项,共3个,故正确;B项,不能同时出现和,故错误;C项,首先必须含有,则剩余拿一个即可,共6个,故正确;项,满足①,②,,则,则,故,满足③,,则,则,则,故,满足④,故正确;故选:ACD三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上)13.已知集合,则__________.【答案】【解析】【分析】根据补集的定义求解.【详解】;经检验满足题意;故答案为:.14.定义:且,则图中的阴影部分可以表示为__________,请用阴影部分表示__________【答案】①.(答案不唯一)②.答案见解析【解析】【分析】根据的定义,结合题意即可得出正确的答案.【详解】根据且可得表示集合中除去中所有元素,所以阴影部分表示除集合公共元素之外的元素给成的集合,即为,因为,所以表示图形如图阴影部分所示:.故答案为:(答案不唯一);15.已知集合,集合或,若,则取值范围为__________.【答案】【解析】【分析】分、、讨论,由可得答案.【详解】,对于集合,当时,,满足条件;当时,,满足条件;当时,,.综上:.故答案为:.16.已知正实数满足,且,则的最小值为__________.【答案】【解析】【分析】将,变形为,再由,利用基本不等式求解.【详解】解:因为,所以,所以,(当且仅当时,联立,解得),所以的最小值为4,故答案为:4四、解答题(共70分.解题应写出文字说明,证明过程或演算步骤)17.已知集合,集合(1)求(2)设,求【答案】(1)或,(2)或【解析】【分析】(1)先解一元二次不等式和绝对值不等式,再根据并集、交集的定义计算可得;(2)根据补集的定义计算可得;【小问1详解】因为,或或,所以或,.【小问2详解】因为,所以或.18.集合,集合.(1)求集合(2)若“”是“”的必要不充分条件,求的取值范围?【答案】(1)或(2)【解析】【分析】(1)解分式不等式求出集合;(2)首先可得,依题意可得真包含于,即可得到不等式组,解得即可【小问1详解】由,即,解得或,所以或;【小问2详解】因为,所以,故,因为""是""的必要不充分条件所以真包含于,所以或,解得或,又,所以或,即的取值范围为.19.为了提高某商品的销售额,某厂商采取了“量大价优”“广告促销”的方法.市场调查发现,某件产品的月销售量(万件)与广告促销费用(万元)满足:,该产品的单价与销售量之间的关系定为:万元,已知生产一万件该产品的成本为8万元,设该产品的利润为万元.(1)求与的函数关系式(利润=销售额-成本-广告促销费用)(2)当广告促销费用定为多少万元的时候,该产品的利润最大?最大利润为多少万元?【答案】(1)(2)时,取最大为15.5万元【解析】【分析】(1)根据已知条件计算利润=销售额-成本-广告促销费用得出与的函数关系式;(2)应用基本不等式计算出和的最小值,取等条件是利润最大时广告促销费.【小问1详解】【小问2详解】,当且仅当时取等,所以当广告促销费用定为2.5万元的时候,该产品利润最大,为15.5万元20.(1)当时,求;(2)若,求的取值范围.【答案】(1)(2)【解析】【分析】(1)解一元二次不等式求出集合,解分式不等式求出集合,再求交集可得答案;(2)求出,集合,分、、讨论,根据可得答案.【小问1详解】当时,,解得集合为,对于集合:,解得集合为,则;【小问2详解】,对于集合,令,,①,;②,;③,,满足条件.综上:的取值范围为.21.若命题:存在,命题:二次函数在的图像恒在轴上方(1)若命题中至少有一个真命题,求的取值范围?(2)对任意的,存在,使得不等式成立,求的取值范围?【答案】(1)(2)【解析】【分析】(1)考虑补集思想,先求出命题均为假命题时的取值范围,再求出其补集即可;(2)先得,然后该不等式左边为关于的一次函数,所以只要把和代入上式不等式可求得结果.【小问1详解】考虑补集思想,命题中至少有一个真命题的反面为:命题均为假命题,,则恒成立,故,,则有解,,当且仅当时取等号,故,故,再取补集:的取值范围为【小问2详解】先研究,不等式对于有解,故:,当且仅当时,取得最小值1,再研究,将视为主元,则该不等式左边为关于的一次函数,故只须在的值均满足条件即可,则,得,解得或故的取值范围为22.已知不等式的解集为(1)若,且不等式有且仅有10个整数解,求的取值范围;(2)解关于的不等式:.【答案】(1)(2)答案见解析【解析】【分析】(1)根据已知可得方程的2个根为2,3,由韦达定理解得,从而得不等式,结合不等式有且仅有10个整数解可得答案;(2)分、、、、、讨论解不等式可得答案.【小问1详解】,原不等式等价于恒成立,且的解集为,故方程的2个根为2,3,故由韦达定理,恒成立,可得恒成立,所以,解得,,故,不等式有且仅有10个整数解,故,所以的取值范围为;【小问2详解】1、当时,由(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论