方程与不等式之分式方程经典测试题_第1页
方程与不等式之分式方程经典测试题_第2页
方程与不等式之分式方程经典测试题_第3页
方程与不等式之分式方程经典测试题_第4页
方程与不等式之分式方程经典测试题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

方程与不等式之分式方程经典测试题一、选择题4.解分式方程 3=——时,去分母得()x—2 2—xA.l-3(x-2)=4B,l-3(x-2)=-4c.-l-3(x-2)=-4D,l-3(2-x)=4【答案】B【解析】【分析】根据等式性质计算即可.【详解】在方程的两边同时乘以x-2,得1-3(工-2)=-4,故选:B.【点睛】此题考查解分式方程,等式的性质,正确计算是解题的关键,此题中容易出现错误的地方是原方程中的分母是互为相反数,注意符号不要弄错.2.方程 = 的解为(20+x20-xA.x=10 B,x=2.方程 = 的解为(20+x20-xA.x=10 B,x=-10C.x=5 D.x=-5【答案】C【解析】【分析】方程两边同时乘以(20+x)(20-x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20-x),得100(20-x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,・••原方程的根是x=5:故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.3.若数。使关于X的分式方程二-一二二3有正数解,且使关于丁的不等式组x-11-X2y-ci>y-1有解,则所有符合条件的整数。的个数为()53'+破4A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据分式方程的解为正数即可得出a>-l且awl,根据不等式组有解,即可得:a<3,找出所有的整数a的个数为2.【详解】解方程一土一1二3,得:x-1l-x4+1A= ,2・•分式方程的解为正数,,4+1>0,即a>-l,又XW1,.Q+]• 01,ah1,2a>-l”a=1,2y-a>y-I.•关于y的不等式组〈1 有解,5)'+破4•a-l<yS8-2a,即a-l<8-2a,解得:a<3,综上所述,a的取值范围是且awl,则符合题意的整数a的值有0、2,有2个,故选:B.【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为5000 8000 5000 8000 5000 8000 5000 8000A.=B・=C.=D.=x-600x xx+600x+600x xx-600【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:5000 8000由题意得:5000 8000xx+600故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.TOC\o"1-5"\h\za-2 15.若x=3是分式方程 ^=0的根,则a的值是()xx-2A.5 B.-5 C.3 D.-3【答案】A【解析】\o"CurrentDocument"4—2 1把x=3代入原分式方程得, =0,解得,a=5,经检验a=5适合原方程.3 3-2故选A.6.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,划提高了25%,结果提前60天完成了这项任务.设原计划每天修路X公里,根据题意列出的方程正确的是( )60x(1+25%)60«A.的方程正确的是( )60x(1+25%)60«A. =60X XB.6060x(1+25%)” =60C.」—一竺二60(l+25%)xxD.C.」—一竺二60(l+25%)xxD.60 60x(l+25%)x=60【答案】D【解析】【分析】设原计划每天修路x公里,则实际每天的工作效率为(1+25%公公里,根据题意即可列出分式方程.【详解】解:设原计划每天修路X公里,则实际每天的工作效率为(1+25%口公里,依题意得:60 依题意得:60 60x(l+25%)x故选:D.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行列方程.2。]7.对于非零实数b,规定。⑥匕=一一一.若(2x-l)=1,则x的值为( )ba

A.1C.A.1C.-1【答案】A【解析】【分析】【详解】解:根据题中的新定义可得:x0(解:根据题中的新定义可得:x0(2x-l)=2x2x-l-=1,X解得:X=l,经检验X=1是分式方程的解,故选A.【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是"转化思想",把分式方程转化为整式方程求解.解分式方程一定注意要验根.TOC\o"1-5"\h\zX n8.若关于x的方程一=2+——有增根,则a的值为()x-4 x-4A.-4 B.2 C.0 D.4【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,y a••・关于x的方程一二=2十一;有增根,x—4文一4Ax-4=0,・•・分式方程的增根是x=4.Y ci关于X的方程4=2+ 去分母得x=2(x-4)+a,x-4 x-4代入x=4得a=4故选D.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x天,则下面所列方程正确的是()TOC\o"1-5"\h\z4 x 4 xA.——+ =1 B.——= x+l x-6 x-l x+64 x 4 xC. 卜 =1 D. + =1x-l x-6 x-l x+6【答案】D【解析】【分析】首先根据工程期限为x天,结合题意得出甲每天完成总工程的」匚,而乙每天完成总工程X-1的二;,据此根据题意最终如期完成了工程进一步列出方程即可.x+6【详解】・•工程期限为x天,••甲每天完成总工程的」丁,乙每天完成总工程的」二,x-l x+6・•由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,4x•••可列方程为:---=bx-lx+6故选:D.【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.Y 210.分式方程一一-1==二,解的情况是( )x-lx--1A.x=l B.x=2 C.x=-1 D.无解【答案】D【解析】【分析】观察式子确定最简公分母为(X+l)(x-l),再进一步求解可得.【详解】方程两边同乘以(x+l)(X-1),得:x(x+l)-(x2-1)=2,解方程得:x=-1,检验:把x=-1.代入x+l=0,所以x=-l不是方程的解.故选:D.

【点睛】此题考查分式方程的解,掌握运算法则是解题关键11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )10001000A. =2x x+3010001000C. =2xx-30【答案】A【解析】10001000A. =2x x+3010001000C. =2xx-30【答案】A【解析】分析:设原计划每天施工x米,际所用时间=2,列出方程即可.详解:设原计划每天施工x米,根据题意,可列方程:--B.D.则实际每天施工则实际每天施工1000 =2,10001000 =2x+30x10001000 =2x—30(x+30)(x+30)米,根据:原计划所用时间-实米,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程..2019年7月30口阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150k〃,现在高速路程缩短了20切?,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用L5小时,设走国道的平均车速为・次7〃//7,则根据题意可列方程为()150-20150A.150-20150A. ——=1.5x2.5x150150-20B.—— =1.52.5%x150150-20「C.150150-20「C.——一 二1Qx2.5x【答案】C【解析】【分析】150-20150「D. ——=1.〉2.5%x根据〃走高速用的时间比走国道少花1.5小时〃列出方程即可得出答案.【详解】根据题意可得,走高速所用时间20小时,走国道所用时间变小时2.” xx2.5x故答案选择C.【点睛】本题考查的是分式方程在实际生活中的应用,根据公式“路程二速度X时间〃及其变形列出等

式是解决本题的关键..如果解关于x的分式方程」二-」一=1时出现增根,那么m的值为x-22-xA.-2 B.2 C.4 D.-4【答案】D【解析】【详解】=1,去分母,方程两边同时乘以(X-2),得:x-22-xm+2x=x-2,由分母可知,分式方程的增根可能是2.当x=2时,m+4=2-2,m=-4,故选D.X ni*14.若关于X的分式方程——2=——有增根,则加的值为().x-3 x-3A.3 B.-73 C.6 D.±73【答案】D【解析】解关于X的方程「——2=8二得:x=6—〃/,x-3 x-3•・•原方程有增根,x—3=0,即6—itt—3=0»解得:m=±5/3-故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根:(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.15.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为X万千克,根据题意,列方程为(A.3036x1.5x=10B.3030x1.5x=10C.36A.3036x1.5x=10B.3030x1.5x=10C.36L5x%。D.3036——+ xi.5x=10【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数一改良后种植的亩数=10亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量工万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:--^-=10.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关健是正确理解题意,找出题目中的等量关系.16.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()TOC\o"1-5"\h\z30 45 30 45A.—= B.—= x x+6 xx-630 45 30 45C. =- D. =-\o"CurrentDocument"x-6 x x+6x【答案】A【解析】【分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等即可列方程.【详解】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间,相等可得型xx+6故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.217.若整数,使得关于无的方程2———=,—的解为非负数,且使得关于),的不等式x—22—x[3y-2,y-2- +1>- 2组《 至少有四个整数解,则所有符合条件的整数。的和为().A.17【答案】CB.A.17【答案】CB.18C.22D.25【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出。的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:2解:y-ci-丁。不等式组整理得:y不等式组整理得:y>-1由不等式组至少有四个整数解,得到一IV"。,解得:应3,即整数。=3,4,5,6,…,2-3=旦,x-22-x去分母得:2(x-2)-3=一51—a解得:x=—21-a口7一。工2, >0,工2,2 2/•a<7»且。工3,由分式方程的解为非负数以及分式有意义的条件,得到。为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.18.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列TOC\o"1-5"\h\z出的方程正确的是( )600 480B=

600 480B=

•x+40 x600 480D.——= xx-40A. =——x-40x600 480C. - xx+40【答案】B【解析】【分析】由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可.【详解】解:设原计划每天生产X台机器,根据题意得:480_600xx+40故选B.【点睛】读懂题意,用含x的代数式表达出原来生产480台机器所需时间为登天和现在生产600台机器所需时间为里登天是解答本题的关键.x+4019.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需X个月,则根据题意可列方程中错误的是()TOC\o"1-5"\h\z3 2 3 2 2 । 3+2 2A.—+ =1B.-+—+ =1C.+ =1xx-2 x x x-2x x-2D.?+2(L——)=1xxx-2【答案】A【解析】【分析】设甲队单独完成全部工程需X个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需工个月,则乙队单独完成全部工程需要(x-2)个月,根TOC\o"1-5"\h\z5 2据题意,得:一+——=1;xx-23 2A、-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论