河南省平顶山市重点中学2025届高三第三次测评数学试卷含解析_第1页
河南省平顶山市重点中学2025届高三第三次测评数学试卷含解析_第2页
河南省平顶山市重点中学2025届高三第三次测评数学试卷含解析_第3页
河南省平顶山市重点中学2025届高三第三次测评数学试卷含解析_第4页
河南省平顶山市重点中学2025届高三第三次测评数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省平顶山市重点中学2025届高三第三次测评数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A. B. C. D.2.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2 B.3 C.4 D.3.阅读如图的程序框图,运行相应的程序,则输出的的值为()A. B. C. D.4.已知向量,满足,在上投影为,则的最小值为()A. B. C. D.5.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元6.把函数的图象向右平移个单位,得到函数的图象.给出下列四个命题①的值域为②的一个对称轴是③的一个对称中心是④存在两条互相垂直的切线其中正确的命题个数是()A.1 B.2 C.3 D.47.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位8.已知双曲线x2a2-y2b2=1(a>0,b>0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐近线上的一点,O为坐标原点,满足|OA|=A.2 B.2 C.2339.已知向量,且,则m=()A.−8 B.−6C.6 D.810.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A. B. C. D.11.在中,角的对边分别为,,若,,且,则的面积为()A. B. C. D.12.已知函数,若,则下列不等关系正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率—0.40.30.8获胜概率0.6—0.70.5获胜概率0.70.3—0.3获胜概率0.20.50.7—则队获得冠军的概率为______.14.函数的定义域为__________.15.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.16.设为数列的前项和,若,则____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有.18.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.19.(12分)[选修4-5:不等式选讲]:已知函数.(1)当时,求不等式的解集;(2)设,,且的最小值为.若,求的最小值.20.(12分)已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.21.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.22.(10分)如图,在四棱锥中,平面,,为的中点.(1)求证:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,,,,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.2、B【解析】

因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,,即,又,.故选:B.【点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.3、C【解析】

根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,,第1次循环,,满足判断条件;第2次循环,,满足判断条件;第3次循环,,满足判断条件;可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.4、B【解析】

根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即又本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.5、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.6、C【解析】

由图象变换的原则可得,由可求得值域;利用代入检验法判断②③;对求导,并得到导函数的值域,即可判断④.【详解】由题,,则向右平移个单位可得,,的值域为,①错误;当时,,所以是函数的一条对称轴,②正确;当时,,所以的一个对称中心是,③正确;,则,使得,则在和处的切线互相垂直,④正确.即②③④正确,共3个.故选:C【点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.7、C【解析】

根据正弦型函数的图象得到,结合图像变换知识得到答案.【详解】由图象知:,∴.又时函数值最大,所以.又,∴,从而,,只需将的图象向左平移个单位即可得到的图象,故选C.【点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.8、C【解析】

计算得到Ac,bca【详解】双曲线的一条渐近线方程为y=bax,A故Ac,bca,Fc,0,故Mc,故选:C.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.9、D【解析】

由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.10、C【解析】

由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【详解】当时,则,,所以,,显然当时,,故,,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.11、C【解析】

由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.【详解】解:,,且,,化为:.,解得..故选:.【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.12、B【解析】

利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【详解】∵在R上单调递增,且,∴.∵的符号无法判断,故与,与的大小不确定,对A,当时,,故A错误;对C,当时,,故C错误;对D,当时,,故D错误;对B,对,则,故B正确.故选:B.【点睛】本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、0.18【解析】

根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.14、【解析】

根据函数成立的条件列不等式组,求解即可得定义域.【详解】解:要使函数有意义,则,即.则定义域为:.故答案为:【点睛】本题主要考查定义域的求解,要熟练掌握张建函数成立的条件.15、【解析】设,则,由题意可得故当时,由不等式,可得,或求得,或故答案为(16、【解析】

当时,由,解得,当时,,两式相减可得,即,可得数列是等比数列再求通项公式.【详解】当时,,即,当时,,两式相减可得,即,即,故数列是以为首项,为公比的等比数列,所以.故答案为:【点睛】本题考查数列的前项和与通项公式的关系,还考查运算求解能力以及化归与转化思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析.(2)答案见解析【解析】

(1)利用复合函数求导求出,利用导数与函数单调性之间的关系即可求解.(2)首先证,令,求导可得单调递增,由即可证出;再令,再利用导数可得单调递增,由即可证出.【详解】(1)显然时,,故在单调递减.(2)首先证,令,则单调递增,且,所以再令,所以单调递增,即,∴【点睛】本题考查了利用导数研究函数的单调性、利用导数证明不等式,解题的关键掌握复合函数求导,属于难题.18、(1)见解析(2)直线过定点.【解析】

(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由此判断出轴.(2)求得点的纵坐标,由此求得点坐标,求得直线的斜率,由此求得直线的方程,化简后可得直线过定点.【详解】(1)设切点,,,∴切线的斜率为,切线:,设,则有,化简得,同理可的.∴,是方程的两根,∴,,,∴轴.(2)∵,∴.∵,∴直线:,即,∴直线过定点.【点睛】本小题主要考查直线和抛物线的位置关系,考查直线过定点问题,考查化归与转化的数学思想方法,属于中档题.19、(1)(2)【解析】

(1)当时,,原不等式可化为,分类讨论即可求得不等式的解集;(2)由题意得,的最小值为,所以,由,得,利用基本不等式即可求解其最小值.【详解】(1)当时,,原不等式可化为,①当时,不等式①可化为,解得,此时;当时,不等式①可化为,解得,此时;当时,不等式①可化为,解得,此时,综上,原不等式的解集为.(2)由题意得,,因为的最小值为,所以,由,得,所以,当且仅当,即,时,的最小值为.【点睛】本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.20、(1);(2)点在定直线上.【解析】

(1)设出直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心到直线的距离,即,解得或(舍去).所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为.令,,即交轴于点坐标为,所以,,,.设点坐标为,则,所以点在定直线上.【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的运算能力,属于综合题.21、(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)【解析】

(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数.从中发现330出现的次数最多,故为众数;(2)由题意能求出的可能取值为340,360,370,420,440,分别求出相对应的概率,由此能求出的分布列和数学期望;(3)利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论