版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市教科所2025届高三适应性调研考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体2.已知函数,则下列结论错误的是()A.函数的最小正周期为πB.函数的图象关于点对称C.函数在上单调递增D.函数的图象可由的图象向左平移个单位长度得到3.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.4.若向量,则()A.30 B.31 C.32 D.335.若实数满足不等式组则的最小值等于()A. B. C. D.6.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对 B.3对C.4对 D.5对7.已知函数,.若存在,使得成立,则的最大值为()A. B.C. D.8.已知复数是纯虚数,其中是实数,则等于()A. B. C. D.9.已知复数z,则复数z的虚部为()A. B. C.i D.i10.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.11.棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为()A. B. C. D.112.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_____14.某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_____袋.15.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.16.平面向量,,(R),且与的夹角等于与的夹角,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.18.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个数91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A个数12241515151215151524从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)19.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.21.(12分)已知实数x,y,z满足,证明:.22.(10分)已知函数.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函数的定义域和值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.2、D【解析】
由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,,所以B正确;当时,,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.3、A【解析】
由的解集,可知及,进而可求出方程的解,从而可求出的解集.【详解】由的解集为,可知且,令,解得,,因为,所以的解集为,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.4、C【解析】
先求出,再与相乘即可求出答案.【详解】因为,所以.故选:C.【点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.5、A【解析】
首先画出可行域,利用目标函数的几何意义求的最小值.【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以.故选:A.【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.6、C【解析】
画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面平面,作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可证:平面平面,由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.7、C【解析】
由题意可知,,由可得出,,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,,由于,则,同理可知,,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,,则,,则,构造函数,其中,则.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.8、A【解析】
对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.9、B【解析】
利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.10、D【解析】
使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题.11、C【解析】
连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OH⊥MN,推导出OH∥RQ,且OH=RQ=,由此能求出该直线被球面截在球内的线段的长.【详解】如图,MN为该直线被球面截在球内的线段连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故选:C.【点睛】本题主要考查该直线被球面截在球内的线段的长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12、B【解析】
将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率.【详解】解:双曲线的左右焦点分别关于两条渐近线的对称点重合,一条渐近线的斜率为1,即,,,故答案为:.【点睛】本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题.14、1【解析】
根据正态分布对称性,求得质量低于的袋数的估计值.【详解】由于,所以,所以袋牛肉干中,质量低于的袋数大约是袋.故答案为:【点睛】本小题主要考查正态分布对称性的应用,属于基础题.15、【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.16、2【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】
(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,,,,,,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,,即成立,即成立..【点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.18、(Ⅰ)分布列见解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值为9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)当P(a≤X≤b)取到最大值时,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前两问的结果,判断至少增加2人.【详解】(Ⅰ)X的取值为:9,12,15,18,24;,,,,,X的分布列为:X912151824P故X的数学期望;(Ⅱ)当P(a≤X≤b)取到最大值时,a,b的值可能为:,或,或.经计算,,,所以P(a≤X≤b)的最大值为.(Ⅲ)至少增加2人.【点睛】本题考查离散型随机变量及其分布列,离散型随机变量的期望与方差,属于中等题.19、(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】
(1)根据题中数据得到列联表,然后计算出,与临界值表中的数据对照后可得结论;(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)在城镇居民140人中,经常阅读的有100人,不经常阅读的有40人.采取分层抽样抽取7人,则其中经常阅读的有5人,记为、、、、;不经常阅读的有2人,记为、.从这7人中随机选取2人作交流发言,所有可能的情况为,,,,,,,,,,,,,,,,,,,,,共21种,被选中的位居民都是经常阅读居民的情况有种,所求概率为.【点睛】本题主要考查古典概型的概率计算,以及独立性检验的应用,利用列举法是解决本题的关键,考查学生的计算能力.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可,属于中档题.20、(Ⅰ);(Ⅱ)面积的最小值为9,.【解析】
(Ⅰ)由已知求出抛物线的焦点坐标即得椭圆中的,再由离心率可求得,从而得值,得标准方程;(Ⅱ)设直线方程为,设,把直线方程代入抛物线方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024春季小学安全工作计划
- 2024控烟工作计划
- 公司2024年公司工作总结及2024年工作计划
- 学校工会计划范文
- 2024学年上学期五年级语文教学计划
- 七年级美术下册教学计划教学提纲
- 机械加工教研组活动计划
- 学校培优辅差工作计划汇编
- 公司员工年度工作计划
- 春季中班教研工作计划
- 高校教师职称答辩演讲稿
- 国开2024年秋《机械制图》形考作业1-4答案
- 劳动教育智慧树知到期末考试答案章节答案2024年温州医科大学
- 思想道德与法治智慧树知到期末考试答案章节答案2024年上海杉达学院
- 中国传统文化Chinese Traditional Culture-英文-SARE(课堂PPT)
- 临床常见症状的鉴别诊断
- 全站仪闭合导线坐标计算表(样表)
- 机械手PLC控制设计
- 21世纪学生核心素养研究PPT精品文档
- 人货电梯安全技术操作规程
- 膨化食品,米果的生产工艺和配方(生活荟萃)
评论
0/150
提交评论