2025届江西鹰潭市第一中学高三第二次联考数学试卷含解析_第1页
2025届江西鹰潭市第一中学高三第二次联考数学试卷含解析_第2页
2025届江西鹰潭市第一中学高三第二次联考数学试卷含解析_第3页
2025届江西鹰潭市第一中学高三第二次联考数学试卷含解析_第4页
2025届江西鹰潭市第一中学高三第二次联考数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西鹰潭市第一中学高三第二次联考数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为()A. B. C. D.2.执行如图所示的程序框图,若输出的,则输入的整数的最大值为()A.7 B.15 C.31 D.633.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.4.若复数满足,则()A. B. C. D.5.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则()A. B. C. D.6.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是()A. B.C. D.7.已知,复数,,且为实数,则()A. B. C.3 D.-38.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.119.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.9610.已知,则的大小关系是()A. B. C. D.11.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.12.已知函数是定义在上的偶函数,当时,,则,,的大小关系为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,则事件“抽到的产品不是一等品”的概率为________14.已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为________15.已知实数、满足,且可行域表示的区域为三角形,则实数的取值范围为______,若目标函数的最小值为-1,则实数等于______.16.如图是一个算法的伪代码,运行后输出的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:分数不少于120分分数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.(下面的临界值表供参考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(参考公式其中)18.(12分)如图,已知四边形的直角梯形,∥BC,,,,为线段的中点,平面,,为线段上一点(不与端点重合).(1)若,(ⅰ)求证:PC∥平面;(ⅱ)求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由.19.(12分)在中,、、分别是角、、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.20.(12分)已知矩阵,.求矩阵;求矩阵的特征值.21.(12分)如图,三棱柱中,与均为等腰直角三角形,,侧面是菱形.(1)证明:平面平面;(2)求二面角的余弦值.22.(10分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【详解】由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.故选:A.【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数.2、B【解析】试题分析:由程序框图可知:①,;②,;③,;④,;⑤,.第⑤步后输出,此时,则的最大值为15,故选B.考点:程序框图.3、B【解析】

设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.4、C【解析】

把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解.【详解】解:由,得,∴.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.5、A【解析】

根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,∴,.即设,则∴当且仅当即时取等号,即.故选:A.【点睛】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.6、D【解析】

根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.7、B【解析】

把和代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值.【详解】因为为实数,所以,解得.【点睛】本题考查复数的概念,考查运算求解能力.8、D【解析】

由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.9、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.10、B【解析】

利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.11、A【解析】

因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,,,,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.12、C【解析】

根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,,当时,,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、0.35【解析】

根据对立事件的概率和为1,结合题意,即可求出结果来.【详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,,抽到不是一等品的概率是,故答案为:.【点睛】本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题.14、【解析】

依据圆锥的底面积和侧面积公式,求出底面半径和母线长,再根据勾股定理求出圆锥的高,最后利用圆锥的体积公式求出体积。【详解】设圆锥的底面半径为,母线长为,高为,所以有解得,故该圆锥的体积为。【点睛】本题主要考查圆锥的底面积、侧面积和体积公式的应用。15、【解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,结合目标函数的最小值,利用数形结合即可得到结论.【详解】作出可行域如图,则要为三角形需满足在直线下方,即,;目标函数可视为,则为斜率为1的直线纵截距的相反数,该直线截距最大在过点时,此时,直线:,与:的交点为,该点也在直线:上,故,故答案为:;.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于基础题.16、13【解析】根据题意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)填表见解析;有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”(2)①详见解析②期望;方差【解析】

(1)完成列联表,代入数据即可判断;(2)利用分层抽样可得的取值,进而得到概率,列出分布列;根据分析知,计算出期望与方差.【详解】(1)分数不少于120分分数不足120分合计线上学习时间不少于5小时15419线上学习时间不足5小时101626合计252045有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”.(2)①由分层抽样知,需要从不足120分的学生中抽取人,的可能取值为0,1,2,3,4,,,,,所以,的分布列:②从全校不少于120分的学生中随机抽取1人,此人每周上线时间不少于5小时的概率为,设从全校不少于120分的学生中随机抽取20人,这些人中每周线上学习时间不少于5小时的人数为,则,故,.【点睛】本题考查了独立性检验与离散型随机变量的分布列、数学期望与方差的计算问题,属于基础题.18、(1)(ⅰ)证明见解析(ⅱ)(2)存在,【解析】

(1)(i)连接交于点,连接,,依题意易证四边形为平行四边形,从而有,,由此能证明PC∥平面(ii)推导出,以为原点建立空间直角坐标系,利用向量法求解;(2)设,求出平面的法向量,利用向量法求解.【详解】(1)(ⅰ)证明:连接交于点,连接,,因为为线段的中点,所以,因为,所以因为∥所以四边形为平行四边形.所以又因为,所以又因为平面,平面,所以平面.(ⅱ)解:如图,在平行四边形中因为,,所以以为原点建立空间直角坐标系则,,,所以,,,平面的法向量为设平面的法向量为,则,即,取,得,设平面和平面所成的锐二面角为,则所以锐二面角的余弦值为(2)设所以,,设平面的法向量为,则,取,得,因为直线与平面所成的角的正弦值为,所以解得所以存在满足,使得直线与平面所成的角的正弦值为.【点睛】此题二查线面平行的证明,考查锐二面角的余弦值的求法,考查满足线面角的正弦值的点是否存在的判断与求法,考查空间中线线,线面,面面的位置关系等知识,考查了推理能力与计算能力,属于中档题.19、(1).(2).【解析】

(1)根据题意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等变换的公式,化简得到,再根据为锐角三角形,求得,利用三角函数的图象与性质,即可求解.【详解】(1)由题意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵为锐角三角形,∴,即,则,所以,综上的取值范围为.【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.20、;,.【解析】

由题意,可得,利用矩阵的知识求解即可.矩阵的特征多项式为,令,求出矩阵的特征值.【详解】设矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论