2025届上海市杨思高中高三冲刺模拟数学试卷含解析_第1页
2025届上海市杨思高中高三冲刺模拟数学试卷含解析_第2页
2025届上海市杨思高中高三冲刺模拟数学试卷含解析_第3页
2025届上海市杨思高中高三冲刺模拟数学试卷含解析_第4页
2025届上海市杨思高中高三冲刺模拟数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市杨思高中高三冲刺模拟数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若对,且,使得,则实数的取值范围是()A. B. C. D.2.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为()A. B. C.3 D.43.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()A. B.1 C. D.24.已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为()A. B. C. D.5.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.56.已知复数是正实数,则实数的值为()A. B. C. D.7.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是()A. B. C. D.8.已知向量,则向量在向量方向上的投影为()A. B. C. D.9.若满足约束条件则的最大值为()A.10 B.8 C.5 D.310.已知当,,时,,则以下判断正确的是A. B.C. D.与的大小关系不确定11.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3 C.2 D.112.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,若,则__________.14.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为______________.15.如图,已知,,为的中点,为以为直径的圆上一动点,则的最小值是_____.16.已知为矩形的对角线的交点,现从这5个点中任选3个点,则这3个点不共线的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别为和,直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.18.(12分)已知抛物线E:y2=2px(p>0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.线段AB的垂直平分线与x轴交于点C.(1)求抛物线E的方程;(2)求△ABC面积的最大值.19.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.①求10件手工艺品中不能外销的手工艺品最有可能是多少件;②记1件手工艺品的利润为X元,求X的分布列与期望.20.(12分)已知函数,函数在点处的切线斜率为0.(1)试用含有的式子表示,并讨论的单调性;(2)对于函数图象上的不同两点,,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.21.(12分)已知椭圆的左、右焦点分别为,离心率为,为椭圆上一动点(异于左右顶点),面积的最大值为.(1)求椭圆的方程;(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,请说明理由.22.(10分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需时间超过4天60总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.879

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,,故在区间上单调递减;当时,,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.2、A【解析】

根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案.【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A.【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.3、B【解析】由题意或4,则,故选B.4、B【解析】由题意可得c=,设右焦点为F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以椭圆的方程为.故选B.点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在.5、B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.6、C【解析】

将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.7、B【解析】

先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.8、A【解析】

投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.9、D【解析】

画出可行域,将化为,通过平移即可判断出最优解,代入到目标函数,即可求出最值.【详解】解:由约束条件作出可行域如图,化目标函数为直线方程的斜截式,.由图可知当直线过时,直线在轴上的截距最大,有最大值为3.故选:D.【点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为的形式,在可行域内通过平移找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.10、C【解析】

由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.【详解】解:设,则,即为增函数,又,,,,即,所以,所以.故选:C.【点睛】本题考查了函数的增减性及导数的应用,属中档题.11、A【解析】

由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.12、C【解析】

如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

分别代入集合中的元素,求出值,再结合集合中元素的互异性进行取舍可解.【详解】依题意,分别令,,,由集合的互异性,解得,则.故答案为:【点睛】本题考查集合元素的特性:确定性、互异性、无序性.确定集合中元素,要注意检验集合中的元素是否满足互异性.14、【解析】

连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率.故答案为:【点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.15、【解析】

建立合适的直角坐标系,求出相关点的坐标,进而可得的坐标表示,利用平面向量数量积的坐标表示求出的表达式,求出其最小值即可.【详解】建立直角坐标系如图所示:则点,,,设点,所以,由平面向量数量积的坐标表示可得,,其中,因为,所以的最小值为.故答案为:【点睛】本题考查平面向量数量积的坐标表示和利用辅助角公式求最值;考查数形结合思想和转化与化归能力、运算求解能力;建立直角坐标系,把表示为关于角的三角函数,利用辅助角公式求最值是求解本题的关键;属于中档题.16、【解析】

基本事件总数,这3个点共线的情况有两种和,由此能求出这3个点不共线的概率.【详解】解:为矩形的对角线的交点,现从,,,,这5个点中任选3个点,基本事件总数,这3个点共线的情况有两种和,这3个点不共线的概率为.故答案为:.【点睛】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)线的普通方程为,曲线的直角坐标方程为;(2).【解析】试题分析:(1)(1)利用cos2θ+sin2θ=1,即可曲线C1的参数方程化为普通方程,进而利用即可化为极坐标方程,同理可得曲线C2的直角坐标方程;

(2)由过的圆心,得得,设,,代入中即可得解.试题解析:(1)曲线的普通方程为,化成极坐标方程为曲线的直角坐标方程为(2)在直角坐标系下,,,恰好过的圆心,

∴由得,是椭圆上的两点,在极坐标下,设,分别代入中,有和∴,则,即18、(1)y2=6x(2).【解析】

(1)根据抛物线定义,写出焦点坐标和准线方程,列方程即可得解;(2)根据中点坐标表示出|AB|和点到直线的距离,得出面积,利用均值不等式求解最大值.【详解】(1)抛物线E:y2=2px(p>0),焦点F(,0)到准线x的距离为3,可得p=3,即有抛物线方程为y2=6x;(2)设线段AB的中点为M(x0,y0),则,y0,kAB,则线段AB的垂直平分线方程为y﹣y0(x﹣2),①可得x=5,y=0是①的一个解,所以AB的垂直平分线与x轴的交点C为定点,且点C(5,0),由①可得直线AB的方程为y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由题意y1,y2是方程③的两个实根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到线段AB的距离h=|CM|,所以S△ABC|AB|h•,当且仅当9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)时等号成立,所以S△ABC的最大值为.【点睛】此题考查根据焦点和准线关系求抛物线方程,根据直线与抛物线位置关系求解三角形面积的最值,表示三角形的面积关系常涉及韦达定理整体代入,抛物线中需要考虑设点坐标的技巧,处理最值问题常用函数单调性求解或均值不等式求最值.19、(1)(2)①2②期望值为X900600300100P【解析】

(1)一件手工艺品质量为B级的概率为.(2)①由题意可得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,.由得,所以当时,,即,由得,所以当时,,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件.②由上可得一件手工艺品质量为A级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C级的概率为,一件手工艺品质量为D级的概率为,所以X的分布列为X900600300100P则期望为.20、(1),单调性见解析;(2)不存在,理由见解析【解析】

(1)由题意得,即可得;求出函数的导数,再根据、、、分类讨论,分别求出、的解集即可得解;(2)假设满足条件的、存在,不妨设,且,由题意得可得,令(),构造函数(),求导后证明即可得解.【详解】(1)由题可得函数的定义域为且,由,整理得..(ⅰ)当时,易知,,时.故在上单调递增,在上单调递减.(ⅱ)当时,令,解得或,则①当,即时,在上恒成立,则在上递增.②当,即时,当时,;当时,.所以在上单调递增,单调递减,单调递增.③当,即时,当时,;当时,.所以在上单调递增,单调递减,单调递增.综上,当时,在上单调递增,在单调递减.当时,在及上单调递增;在上单调递减.当时,在上递增.当时,在及上单调递增;在上递减.(2)满足条件的、不存在,理由如下:假设满足条件的、存在,不妨设,且,则,又,由题可知,整理可得:,令(),构造函数().则,所以在上单调递增,从而,所以方程无解,即无解.综上,满足条件的A、B不存在.【点睛】本题考查了导数的应用,考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论