华东师范大学《人工智能基础与应用A》2021-2022学年第一学期期末试卷_第1页
华东师范大学《人工智能基础与应用A》2021-2022学年第一学期期末试卷_第2页
华东师范大学《人工智能基础与应用A》2021-2022学年第一学期期末试卷_第3页
华东师范大学《人工智能基础与应用A》2021-2022学年第一学期期末试卷_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页华东师范大学

《人工智能基础与应用A》2021-2022学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的知识表示方法中,语义网络和框架表示是常见的方式。假设我们要构建一个关于动物分类的知识系统,以下关于这两种表示方法的说法,哪一项是正确的?()A.语义网络更适合表示结构化的、层次分明的知识B.框架表示难以处理知识的不确定性和模糊性C.语义网络难以表达复杂的对象及其关系D.框架表示在知识的扩展和更新方面较为困难2、自动驾驶是人工智能的一个具有挑战性的应用领域。以下关于自动驾驶的描述,不正确的是()A.自动驾驶分为不同的级别,从辅助驾驶到完全自动驾驶B.自动驾驶需要依靠传感器、计算机视觉和决策算法等技术的协同工作C.目前的自动驾驶技术已经非常成熟,可以在任何路况下安全可靠地运行D.自动驾驶面临着法律、道德和技术等多方面的挑战和问题3、人工智能在工业生产中的质量检测方面有广泛应用。假设要开发一个能够检测产品缺陷的系统,需要考虑光照、拍摄角度等因素对图像的影响。以下关于解决这些影响的方法,哪一项是不正确的?()A.使用多光源和多角度拍摄,获取更全面的产品图像B.对图像进行预处理,如归一化和标准化,减少光照和角度的影响C.忽略光照和角度的变化,依靠模型的自适应能力D.建立光照和角度的模型,对图像进行校正4、在人工智能的强化学习中,探索与利用的平衡是一个关键问题。假设一个智能体在一个未知的环境中学习,既要充分探索新的策略,又要利用已有的有效策略。以下哪种策略在平衡探索与利用方面表现较好?()A.ε-贪心策略B.基于置信上限的策略C.随机策略D.固定策略5、在人工智能的艺术创作中,以下哪种方式可能会引发关于作品原创性和版权的争议?()A.基于已有作品的风格进行模仿创作B.使用人工智能生成全新的艺术作品C.人类艺术家与人工智能共同创作D.以上都有可能6、人工智能中的智能客服可以回答用户的各种问题。假设我们要评估一个智能客服的性能,以下关于评估指标的说法,哪一项是不正确的?()A.回答的准确性B.响应的速度C.语言的优美程度D.能够解决问题的复杂程度7、在人工智能的强化学习中,假设环境的奖励信号存在延迟和不确定性。以下哪种方法能够帮助智能体更好地应对这种情况?()A.使用深度强化学习算法,具有更强的表示能力B.引入先验知识和启发式策略C.增加训练的迭代次数D.以上都是8、在机器学习中,监督学习和无监督学习是两种主要的学习方式。考虑一个场景,我们有大量未标记的图像数据,希望从中发现一些潜在的模式和结构。以下哪种机器学习方法更适合这种情况?()A.线性回归B.决策树C.聚类分析D.逻辑回归9、人工智能中的生成对抗网络(GAN)在图像生成、数据增强等方面表现出色。假设要使用GAN生成逼真的艺术图像,以下关于GAN训练过程的描述,哪一项是不准确的?()A.生成器试图生成逼真的图像来欺骗判别器,判别器则努力区分真实图像和生成的图像B.训练过程中,生成器和判别器的性能会交替提升,直到达到平衡C.一旦GAN训练完成,生成器就能够独立生成高质量的图像,无需判别器的参与D.调整生成器和判别器的网络结构和参数,可以影响生成图像的质量和多样性10、在人工智能的决策树算法中,当进行特征选择来构建决策树时,以下哪种特征选择标准通常能够产生更优的决策树?()A.信息增益B.基尼系数C.随机选择特征D.选择特征数量最多的特征11、人工智能在工业生产中的质量检测环节具有应用价值。假设一个工厂要利用人工智能检测产品缺陷,以下关于其应用的描述,哪一项是不准确的?()A.通过图像分析和机器学习算法,自动识别产品表面的缺陷B.可以对大量的检测数据进行学习,不断提高缺陷检测的准确率C.人工智能检测系统能够完全取代人工检测,不需要人工复检D.结合深度学习模型和传统图像处理技术,提高检测的可靠性12、在人工智能的模型训练中,超参数的调整是一个关键步骤。假设正在训练一个用于文本生成的循环神经网络(RNN),以下关于超参数选择的方法,哪一项是不太可取的?()A.基于经验和直觉,随机选择一组超参数进行试验B.使用网格搜索或随机搜索等方法,系统地尝试不同的超参数组合C.借鉴已有的相关研究和实践中常用的超参数设置D.利用自动超参数调整工具,如Hyperopt,根据验证集的性能自动寻找最优超参数13、情感计算是人工智能的一个新兴领域,旨在让计算机理解和处理人类的情感。假设要开发一个能够识别用户情感状态的系统。以下关于情感计算的描述,哪一项是不准确的?()A.可以通过分析语音、面部表情和文本等多模态信息来判断情感B.情感计算的应用可以包括心理咨询、客户服务等领域C.目前的情感计算技术已经能够准确无误地识别和理解所有复杂的人类情感D.情感模型的训练需要大量标注了情感标签的数据14、人工智能中的可解释性是一个重要的研究方向。假设要解释一个深度学习模型的决策过程和输出结果,以下关于模型可解释性的描述,正确的是:()A.深度学习模型的内部运作非常复杂,无法进行任何形式的解释B.特征重要性分析可以帮助理解模型对输入特征的依赖程度C.可视化技术只能展示模型的结构,不能解释模型的决策逻辑D.模型可解释性对于实际应用没有太大意义,只要模型性能好就行15、人工智能中的强化学习在机器人控制领域有重要应用。假设一个机器人需要学习在复杂环境中行走而不摔倒,以下关于奖励函数的设计,哪一项是最需要仔细考虑的?()A.只根据机器人是否到达目标位置给予奖励B.综合考虑机器人的行走速度、稳定性和能量消耗等因素给予奖励C.给予固定的奖励值,不考虑机器人的表现D.随机给予奖励,增加学习的不确定性16、在人工智能的情感计算领域,除了文本和语音,面部表情的分析也具有重要意义。假设要开发一个能够实时分析人类面部表情来推断情感状态的系统,以下哪种方法在准确性和实时性方面面临更大的挑战?()A.基于传统计算机视觉的方法B.基于深度学习的方法C.基于传感器的方法D.以上方法难度相当17、在人工智能的模型评估中,除了准确率和召回率等常见指标,以下哪种指标对于衡量模型的性能也很重要?()A.F1值,综合考虑准确率和召回率B.均方误差,用于回归问题C.混淆矩阵,详细展示分类结果D.以上都是18、在人工智能的药物研发中,机器学习可以辅助药物分子的设计和筛选。假设要开发一种治疗特定疾病的新药,以下哪种机器学习方法可能最有助于找到潜在的有效分子结构?()A.分类算法B.回归分析C.聚类分析D.强化学习19、在人工智能的发展历程中,机器学习作为重要的分支取得了显著的成果。假设要开发一个能够自动识别手写数字的系统,需要从大量的手写数字图像数据中学习特征和模式。以下哪种机器学习算法在处理这种图像数据分类问题上具有较大的优势,同时能够适应不同的书写风格和变形?()A.决策树算法B.朴素贝叶斯算法C.卷积神经网络(CNN)D.支持向量机(SVM)20、在人工智能的医疗影像诊断中,深度学习模型可以辅助医生发现病变。假设要评估一个深度学习模型在乳腺X光影像诊断中的性能,以下哪个指标是最重要的?()A.准确率B.召回率C.F1值D.特异性21、在人工智能的艺术创作评价中,例如评价一幅由人工智能生成的绘画作品,以下哪种标准和方法可能是具有挑战性的?()A.创新性和独特性B.技术技巧和表现力C.情感传达和审美价值D.以上都是22、对于一个智能聊天机器人,需要理解用户输入的自然语言并生成合理的回复。假设用户提出了一个复杂且含义模糊的问题,聊天机器人要准确理解用户的意图并提供有用的回答。以下哪种技术或方法对于提高聊天机器人的理解和生成能力是关键的?()A.构建大规模的语料库,通过匹配来生成回复B.运用深度学习模型,如Transformer架构进行训练C.基于模板的回复生成,限制回复的多样性D.不考虑上下文,只根据问题的关键词生成回复23、人工智能中的迁移学习是一种有效的技术手段。以下关于迁移学习的描述,不正确的是()A.迁移学习可以利用已有的预训练模型和知识,在新的任务和数据上进行微调B.迁移学习能够减少新任务中的数据标注工作量和训练时间C.迁移学习只能在相似的领域和任务中应用,无法跨越不同的领域D.合理运用迁移学习可以提高模型的泛化能力和性能24、人工智能中的“胶囊网络(CapsuleNetwork)”的主要优势是?()A.对姿态和变形的鲁棒性B.减少参数数量C.提高训练速度D.增强可解释性25、人工智能在医疗影像诊断中的应用不断发展。假设一个医院要引入人工智能辅助诊断系统来检测癌症。以下关于该应用的描述,哪一项是错误的?()A.能够提高诊断的准确性和效率,减少漏诊和误诊的情况B.可以与医生的经验和判断相结合,提供更全面的诊断依据C.人工智能诊断系统可以完全取代病理医生的工作,独立做出诊断结论D.需要经过严格的临床试验和验证,确保其安全性和有效性二、简答题(本大题共4个小题,共20分)1、(本题5分)解释人工智能发展带来的教育变革。2、(本题5分)简述人工智能在气象预报中的进展。3、(本题5分)简述人工智能在医疗资源分配和公平性保障中的策略。4、(本题5分)解释人工智能在智能绩效指标制定中的方法。三、案例分析题(本大题共5个小题,共25分)1、(本题5分)考察某智能渔业资源管理系统中人工智能的鱼类数量监测和捕捞策略制定。2、(本题5分)考察一个利用人工智能进行天气预报的模型,分析其数据处理和预测准确性。3、(本题5分)考察一个基于人工智能的智能绘画色彩搭配建议系统,讨论其如何提供合适的色彩搭配方案。4、(本题5分)考察一个基于人工智能的智能金融风险评估系统,讨论其在贷款审批和投资决策中的作用。5、(本题5分)分析一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论