华东师范大学《计算机视觉》2021-2022学年第一学期期末试卷_第1页
华东师范大学《计算机视觉》2021-2022学年第一学期期末试卷_第2页
华东师范大学《计算机视觉》2021-2022学年第一学期期末试卷_第3页
华东师范大学《计算机视觉》2021-2022学年第一学期期末试卷_第4页
华东师范大学《计算机视觉》2021-2022学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共2页华东师范大学《计算机视觉》

2021-2022学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉中,以下哪种方法常用于图像的语义分割中的边界优化?()A.条件随机场B.全连接条件随机场C.深度学习D.以上都是2、假设要开发一个能够对指纹进行识别和认证的计算机视觉系统,以下哪种特征提取和匹配方法可能在指纹识别中具有较高的准确性?()A.细节点提取B.方向场提取C.纹理特征提取D.以上都是3、在计算机视觉中,深度估计是确定场景中物体距离相机的距离。以下关于深度估计的说法,错误的是()A.可以通过立体视觉、结构光或飞行时间等技术来获取深度信息B.深度学习方法在单目深度估计中取得了显著进展C.深度估计对于三维重建、虚拟现实和增强现实等应用具有重要意义D.深度估计的结果总是非常精确,不需要进行后处理和优化4、在计算机视觉的图像压缩任务中,假设要在保证一定图像质量的前提下,尽可能减少图像的数据量。以下哪种图像压缩方法可能更有效?()A.基于离散余弦变换(DCT)的压缩算法,如JPEGB.无损压缩方法,如PNGC.不进行任何压缩,直接存储原始图像D.随机删除图像中的部分像素5、在计算机视觉的应用于自动驾驶领域,需要实时检测道路上的交通标志和标线。假设车辆在高速行驶中,以下哪种技术能够快速准确地检测到各种交通标志,并且对光照变化和遮挡具有较强的鲁棒性?()A.基于颜色和形状特征的检测方法B.基于深度学习的检测方法,结合多尺度特征C.基于边缘检测和形态学操作的方法D.基于模板匹配和特征点匹配的方法6、计算机视觉中的特征提取是非常关键的步骤。假设要从一组图像中提取具有代表性的特征,以下关于特征提取方法的描述,正确的是:()A.手工设计的特征,如SIFT和HOG,在任何情况下都比深度学习自动学习的特征更有效B.深度学习中的卷积神经网络能够自动学习到图像的多层次特征,具有很强的表达能力C.特征提取的结果对后续的图像分类和目标检测任务没有影响D.特征提取只需要考虑图像的局部信息,全局信息不重要7、计算机视觉中的表情识别旨在判断图像或视频中人物的表情。假设要开发一个用于在线教育的表情识别系统,以下关于表情特征的提取,哪一项是需要重点关注的?()A.提取面部肌肉的细微运动作为特征B.仅考虑眼睛和嘴巴的形状变化C.忽略面部的整体轮廓,只关注局部特征D.不进行任何特征提取,直接使用原始图像进行分类8、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声。以下关于图像去噪方法的描述,正确的是:()A.中值滤波能够有效地去除椒盐噪声,但会使图像变得模糊B.均值滤波在去除噪声的同时能够很好地保留图像的细节信息C.小波变换去噪方法计算复杂度高,不适合处理大规模图像D.所有的图像去噪方法都能够完全恢复出原始的无噪图像9、计算机视觉中的图像修复旨在恢复图像中缺失或损坏的部分。假设一张珍贵的老照片有部分区域损坏,需要进行修复以还原其完整的内容。以下哪种图像修复方法在处理这种情况时能够生成更自然和逼真的结果?()A.基于扩散的图像修复B.基于纹理合成的图像修复C.基于深度学习的图像修复D.基于样例的图像修复10、视频理解是计算机视觉中的一个具有挑战性的任务。以下关于视频理解的叙述,不准确的是()A.视频理解不仅需要分析每一帧图像的内容,还需要考虑帧之间的时间关系B.循环神经网络(RNN)和长短期记忆网络(LSTM)在处理视频序列数据时具有优势C.视频理解在视频监控、行为分析和内容推荐等方面具有广泛的应用前景D.目前的视频理解技术已经能够完全理解复杂场景下的视频内容,不存在任何挑战11、在计算机视觉的动作识别任务中,区分不同的人体动作。假设要从一段视频中识别出一个人是在跑步还是走路,以下关于动作识别方法的描述,正确的是:()A.基于骨架信息的动作识别方法对人体姿态的微小变化不敏感B.只考虑动作的空间特征就能准确识别不同的动作C.融合时空特征和深度学习模型能够提升动作识别的准确率D.动作识别的结果不受视频拍摄角度和背景干扰的影响12、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响13、计算机视觉在文物保护和修复中的应用逐渐增多。假设要对一幅古老的绘画进行数字化修复和增强,以下关于颜色恢复的挑战,哪一项是最为显著的?()A.由于年代久远,原画作的颜色信息缺失严重B.不同区域的颜色褪色程度不一致,难以统一恢复C.缺乏对原画作创作时所用颜料的了解,难以准确还原颜色D.修复过程中可能引入新的颜色偏差,影响修复效果14、计算机视觉中的行人检测是智能监控系统中的重要任务。假设要在一个拥挤的公共场所中准确检测出行人,同时要排除其他类似物体的干扰。以下哪种行人检测方法在这种复杂环境下具有更高的检测率和较低的误检率?()A.基于HOG特征的行人检测B.基于深度学习的行人检测C.基于运动信息的行人检测D.基于形状模板的行人检测15、在一个基于计算机视觉的无人驾驶系统中,需要对道路场景进行理解和预测,例如判断前方是否有行人横穿马路。为了实现准确的场景理解和预测,以下哪种技术可能是关键?()A.语义分割B.实例分割C.场景图生成D.以上都是16、在计算机视觉的图像生成任务中,除了生成新的图像,还可以对已有图像进行风格转换。假设我们要将一张照片转换为油画风格,以下哪种方法能够实现逼真的风格转换效果?()A.基于图像滤波和变换的方法B.基于深度学习的风格迁移算法,如CycleGANC.基于图像融合和合成的方法D.基于颜色映射和纹理合成的方法17、计算机视觉中的人脸识别技术应用广泛。假设要在一个门禁系统中实现准确的人脸识别,以下关于人脸识别方法的描述,正确的是:()A.基于几何特征的人脸识别方法对姿态和光照变化具有很强的鲁棒性B.基于模板匹配的方法能够处理大规模的人脸数据库,并且识别速度快C.深度学习中的卷积神经网络在人脸识别中能够学习到更具判别性的特征,但容易受到数据偏差的影响D.人脸识别系统一旦训练完成,就不需要更新和优化,能够一直保持高准确率18、在计算机视觉中,图像增强技术用于改善图像的质量。以下关于图像增强的描述,不正确的是()A.图像增强可以包括对比度增强、锐化、去噪等操作B.图像增强的目的是使图像更适合人类视觉观察或后续的处理任务C.过度的图像增强可能会导致图像失真或引入噪声D.图像增强只对低质量的图像有效果,对于高质量的图像没有必要进行增强19、计算机视觉中的车牌识别是智能交通系统中的重要组成部分。假设要在一个高速公路收费站实现准确的车牌识别,以下关于车牌识别方法的描述,正确的是:()A.基于边缘检测和字符分割的方法对车牌的变形和污渍具有很强的适应性B.深度学习中的卷积神经网络能够直接从车牌图像中识别出字符,但对车牌的倾斜和光照不均敏感C.车牌识别系统只需要在白天光照良好的条件下工作,夜间和恶劣天气下无法正常运行D.车牌识别的准确率只取决于车牌图像的清晰度,与车牌的颜色和字体无关20、计算机视觉中的无人驾驶技术是一个综合性的应用领域。以下关于无人驾驶中的计算机视觉的说法,不正确的是()A.计算机视觉在无人驾驶中用于环境感知、目标检测、路径规划和障碍物避让等任务B.深度学习方法能够实时准确地识别道路标志、车辆和行人等物体C.无人驾驶中的计算机视觉系统已经非常成熟,能够应对各种复杂的交通场景D.恶劣天气条件和光照变化等因素仍然是无人驾驶中计算机视觉面临的挑战二、简答题(本大题共3个小题,共15分)1、(本题5分)简述图像的色调调整方法。2、(本题5分)解释计算机视觉在音乐演出中的舞台效果增强。3、(本题5分)简述计算机视觉在手势识别中的挑战和解决方案。三、分析题(本大题共5个小题,共25分)1、(本题5分)以一个家居品牌的家居展会展示设计为例,分析其视觉效果、产品展示和空间布局,讨论如何吸引观众的关注和提高品牌的知名度。2、(本题5分)以某化妆品品牌的新品发布会设计为例,分析其舞台布置、产品展示、嘉宾邀请如何吸引媒体和消费者关注。3、(本题5分)选取某时尚品牌的时尚品牌故事视频设计,分析其如何运用视觉和音频元素讲述品牌故事和传递品牌

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论