版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Lesson20RecentAdvancesinComputerVision
(第二十课计算机视觉的新进展)
Vocabulary(词汇)ImportantSentences(重点句)QuestionsandAnswers(问答)Problems(问题)ReadingMaterial(阅读材料)
Computervisionisthebranchofartificialintelligencethatfocusesonprovidingcomputerswiththefunctionstypicalofhumanvision.Todate,computervisionhasproducedimportantapplicationsinfieldssuchasindustrialautomation,robotics,biomedicine,andsatelliteobservationofEarth.Inthefieldofindustrialautomationalone,itsapplicationsincludeguidanceforrobotstocorrectlypickupandplacemanufacturedparts,nondestructivequalityandintegrityinspection,andon-linemeasurements.Untilafewyearsago,chronicproblemsaffectedcomputer-visionsystemsandpreventedtheirwidespreadadoption.Sinceitsstart,computervisionhasappearedasacomputationallyintensiveandalmostintractablefieldbecauseitsalgorithmsrequireaminimumofhundredsofMIPS(MillionsofInstructionsPer-Second)tobeexecutedinacceptablerealtime.[1]Eventheinput/outputofhigh-resolutionimagesatvideoratewastraditionallyabottleneckforcommoncomputingplatformssuchaspersonalcomputersandworkstations.Tosolvetheseproblems,theresearchcommunityhasproducedanimpressivenumberofdedicatedcomputer-visionsystems.OnesuchfamoussystemwastheMassivelyParallelProcessor(MPP),designedattheGoddardSpaceFlightCenterin1983andoperatedthereuntil1991.TheMPPusedanarrayof16,384single-bitprocessorsandwascapableatpeakperformanceof250millionfloating-pointoperations/s—animpressivefeatatthetime.
DedicatedcomputerssuchastheMPPhavealwaysreceivedacoldreceptionfromindustrybecausetheywereexpensive,cumbersome,anddifficulttoprogram.[2]Inrecentyears,however,increasedperformanceatthesystemlevel—fastermicroprocessors,fasterandlargermemories,andfasterandwiderbuses—hasmadecomputervisionaffordableonawidescale.Fastmicroprocessorsanddigital-signalprocessorsarenowavailableasoff-the-shelfsolutions,andsomeofthemcanexecutecalculationsatratesofthousandsofMIPS.TheTexasInstrumentsC6414processor,forexample,runsat600MHzandcanachieveapeakperformanceof4,800MIPS.HighspeedserialbusessuchastheIEEE1394andUSB2.0arecapableoftransferringhundredsofmegabitspersecond,aratethatgreatlyexceedstherequirementsofanycommonhigh-resolutionvideocamera.Thesebusesarealreadyintegratedintothemostrecentpersonalcomputerchipsetsorareavailableasinexpensivedaughterboards.Moreover,videocamerashavegonealmostcompletelytodigital,andtheycomeinseveralpricerangesandtypes.ConsumercamcordersarebasedonstandardssuchastheDigitalVideo(DV),whichprovidesvideoswith720×480pixels/frameatarateof30frames/s.EvenWebcamscannowprovideimagesofsatisfactoryqualityatpricesstartingaslowas$25.
Theavailabilityofaffordablehardwareandsoftwarehasopenedthewayfornew,pervasiveapplicationsofcomputervision.Theseapplicationshaveonefactorincommon.Theytendtobehuman-centered;thatis,eitherhumansarethetargetsofthevisionsystemortheywanderaboutwearingsmallcameras,orsometimesboth.Visionsystemshavebecomethecentralsensorinapplicationssuchas
Human-ComputerInterfaces(HCIs),thelinksbetweencomputersandtheirusers.
augmentedperception,toolsthatincreasenormalperceptioncapabilitiesofhumans.
automaticmediainterpretation,whichprovidesanunderstandingofthecontentofmoderndigitalmedia,suchasvideosandmovies,withouttheneedforhumaninterventionorannotation.
videosurveillanceandbiometrics.1Human-computerinterfaces
ThebasicideabehindtheuseofcomputervisioninHCIsisthatinseveralapplications,computerscanbeinstructedmorenaturallybyhumangesturesthanbytheuseofakeyboardormouse.Inoneinterestingapplication,computerscientistJamesL.CrowleyoftheNationalPolytechnicalInstituteofGrenobleinFranceandhiscolleaguesusedhumaneyemovementstoscrollacomputerscreenupanddown.Acameralocatedontopofthescreentrackedtheeyemovements.TheFrenchresearchersreportedthatatrainedoperatorcouldcompleteagiventask32%fasterbyusinghiseyesratherthanakeyboardormousetodirectscreenscrolling.Ingeneral,usingcamerastosensehumangesturesismucheasierthanmakinguserswearcumbersomeperipheralssuchasdigitalgloves.
AnotherinterestingexampleofanHCIapplicationcanbedownloadedhereforpersonaltesting,providedaWebcamispluggedintoyourpersonalcomputer.Thisapplication—calledNouse,fornoseasamouse—tracksthemovementsofyournose,andwasdevelopedbyDmitryGorodnichy.YoucanplayNosePong,anose-drivenversionofthePongvideogame(Fig.1),ortestyourabilitytopaintwithyournoseortowritewithyournose.Althoughthisapplicationisslantedtowardfun,itisaconvincingdemonstrationofthepotentialusesofcamerasasnaturalinterfaces.Inindustry,forexample,anoperatormightquicklystopaconveyorbeltwithaspecificgesturedetectedbyacamerawithoutneedingtophysicallypushabutton,pullalever,orcarryaremotecontrol.Fig.1Acameratracksthepointofeachplayer’snoseclosesttothecameraandlinksittothe
red“bat”at
thetop(orbottom)ofthetabletoreturnthecomputerballacrossthe“net.”(InstituteforInformationTechnologyNationalResearchCouncilCanada;UniversityofTechnology,Sydney,Australia)
Camerascouldalsobecomepowerfulperipheralsfortheso-calledintelligenthome.Acameralocatedinyourlivingroomwouldperformseveraltasks,startingwithsensingahumanpresenceandthenturningthelightsonandtheheatup.Indeed,camerascouldreplacethemanyhard-to-findremotecontrolsaroundtoday’shomes,provideenvironmentalsurveillance,andturntheTVoffwhenyoufallasleepinyourfavouritearmchair.2TheVoice
AnotherapplicationisThevOICe,developedatPhilipsResearchLaboratories(Eindhoven,TheNetherlands)byPeterB.L.Meijerandavailableonlinefortesting.ThevOICeprovidesasimpleyeteffectivemeansofaugmentedperceptionforpeoplewithpartiallyimpairedvision.Inthevirtualdemonstration,thecameraaccompaniesyouinyourwanderings.Thecameraperiodicallyscansthesceneinfrontofyouandturnsimagesintosounds,usingdifferentpitchesandlengthstoencodeobjects’positionandsize.3Mediainterpretation
Theuseofcomputervisionforautomaticmediainterpretationassistsusersinsearchingforspecificscenesandshotsotherwisenotannotatedinthevideo-sceneindexes.Forexample,imagescontainingfacescanbeautomaticallydistinguishedfromotherimages,astheresultsoftheFaceDetectionProjectledbyHenrySchneidermanandTakeoKanadeatCarnegieMellonUniversity(CMU)prove.TheCMUfacedetectorisconsideredthemostaccurateforfrontalfacedetectionandisalsoreliableforfacialprofilesandthree-quarterimages.Manyexamplesareavailablehere-oneisshowninFig.1,top—andanyonecansubmitanimagewhichwillprocesstheimageovernightanddepictalldetectedfaceswithaboxaroundthem.
However,computervisioncandomuchmoreformultimedia.Forexample,itisaninvaluablesupporttorecentmultimediastandardsaimedatcompressingdigitalvideos—reducingtheirsizeinbytes—whilestillretainingacceptablevisualquality.OnesuchstandardisMPEG-4fromtheMovingPictureExpertGroup,whichallowsthecompressionofdifferentobjectsinascenewithspecificcompressionlevelsinsuchawayastoadjustthetrade-offbetweenspacereductionandvisualqualityonaper-objectbasis.Thebasicideaisthatimportantobjectssuchasactorsshouldretainthehighestvisualquality,whileobjectsinthebackgroundcanbeencodedwithlowerqualitytosavebytes.[3]Nonetheless,MPEG-4issilentonhowtoseparateavideointotheobjectsofwhichitiscomposed.Hereagain,computervisioncanhelpwithavarietyoftechniquesthatperformthetaskautomatically.4VideoSurveillance
Perhapsthemostdevelopedmodernapplicationofcomputervisionisvideosurveillance.Longgonearethedayswhenvideosurveillancemeantlow-resolution,black-and-white,analogclosed-circuittelevision.Nowadays,computervisionenablestheintegrationofviewsfrommanycamerasintoasingle,consistent“superimage”.Suchanimageautomaticallydetectssceneswithpeopleand/orvehiclesorothertargetsofinterest,classifiesthemincategoriessuchaspeople,cars,bicycles,orbuses,extractstheirtrajectories,recognizeslimbandarmpositions,andprovidessomeformofbehavioranalysis.[4]
Theanalysisreliesonalistofpreviouslyspecifiedbehaviorsoronstatisticalobservationssuchasfrequent-versus-infrequentbehaviors.Thebasicgoalisnottocompletelyreplacesecuritypersonnelbuttoassisttheminsupervisingwiderareasandfocusingtheirattentiononeventsofinterest.Althoughthecriticalissueofprivacymustbeaddressedbeforesocietywidelyadoptsthesevideosurveillancesystems,therecentneedforincreasedsecurityhasmadethemmorelikelytowingeneralacceptance.Inaddition,severaltechnicalcountermeasurescanbetakentopreventprivacyabuses,suchasprotectingaccesstovideofootagebywayofpasswordsandencryption.
AttheUniversityofTechnologyinSydney,Australia,wehavedevelopedandtestedasystemthatcandetectsuspiciouspedestrianbehaviorinparkinglots.Ourapproachisbasedontheassumptionthatasuspiciousbehaviorcorrespondstoanindividual’serraticwalkingtrajectory.Therationalebehindthisassumptionisthatapotentialoffenderwillwanderaboutandstopbetweendifferentcarstoinspecttheircontents,whereasnormaluserswillmaintainamoredirectpathoftravel.Thefirststepconsistsofdetectingallthemovingobjectsinthescenebysubtractinganestimated“backgroundimage”—onethatrepresentsonlythestaticobjectsinthescene—fromthecurrentframe(Fig.2(a)and(b)).Thenextstepistodistinguishpeoplefrommovingvehiclesonthebasisofaformfactor,suchastheheight:widthratio,andtolocatetheirheadsasthetopregionintheirsilhouette.Inthisway,thehead’sspeedateachframeisautomaticallydetermined.Then,aseriesofspeedsamplesarerepeatedlymeasuredforeachpersoninthescene.Eachseriescoversanintervalofabout10s,whichisenoughtodetectsuspiciousbehaviorpatterns(Fig.3,below).Fig.2Thisparking-lotsurveillancesystemsubtractsthestaticbackgroundimage,
distinguishesapersonfrommovingvehicles,locatesthehead,andcalculatesthespeedoftheheadineachframe.Fig.3Examplesofthespeedofthehead(inpixelsperframe)ofapersonintheparkinglotexhibitingnormalbehavior(a)andabnormalbehavior(b).Suchvideosurveillancemightalertasecurityguardtoapossiblecarthief.
Finally,aneuralnetworkclassifier,trainedtorecognizethesuspiciousbehaviors,providesthebehaviorclassification.Intheexperimentsweperformed,thesystemachievedgoodaccuracy,withareasonablylimitednumberoffalsedismissalsandfalsealarms—4%and2%,respectively,amongmorethan100testsamples.Althoughmanufacturersandoperatorsofsurveillancesystemshaveoftenbeenreluctanttoacceptinnovation,recentresultsfromresearchlaboratoriesofmajorcompaniesprovethatthesesystemsarenowreliable,economical,andreadyforcommercialization.[5]OneexampleisDETERfromHoneywellLabs,aprototypeurban-surveillancesystem.
Forthosewhowanttobuildtheirownsurveillancesystems,anenormousamountofequipmentisavailable.WebsitesofmanufacturerssuchasSony,Axis,Pelco,andmanyothersofferawiderangeofcameras.Youcanfindnetworkcamerasstartingatlessthan$500thatcanbesimplypluggedintoanynetwork,suchasaTCP-IP,whichcancarryafullWebserverandallowcameraframestobedownloadedandprocessed.Adjustablepan-tilt-zoomcamerascanbeusedtopointandfocusonspecifictargetsoverwidesurveyareas.Andifcablingposesaproblembecauseofcameralocation,wirelessversionsareavailableoff-the-shelf.Computervision,alreadyausefulaidinseveralindustrialprocesses,willfindincreasingusesascompaniesdevelopnewapplicationsinareassuchasHCI,augmentedperception,andautomaticmediainterpretation.Itspotentialtoimproveplantandpublicsafetyisattractingincreasingattentionintoday’ssecurity-consciousworld.
1. nondestructiveadj.非破坏(性)的,不破坏的,(检验方法)无损的。
2. chronicadj.(=chronical)慢性的;缓慢的;长期的;积习成癖的[英俚]剧烈的,紧张的;严重的;(天气等)恶劣的。
3. bottleneckn.瓶颈;困难;障碍;隘路;狭道;难关;薄弱环节;涌塞(现象);影响生产流程的因素(如缺少原料等)。
4. dedicatedcomputers专用计算机。
5. off-the-shelf现货供应:在存货商品中能得到的;非定制的。
Vocabulary
6. daughterboard子板,子插件。指一块主板的附属电路板,通常包括插槽、插座、引脚、连接件等其他附属部分,不同于标准的PCI或ISA等标准板。
7. peripheraladj.周界的;外围的;外部的;边缘的;非本质的;不深入的;肤浅的;【解】(神经)末梢区域的。
8. surveillancen.监视,看守;监督,管制。
9. countermeasuren.反措施,对抗手段,对策:对抗或抵消某手段或行为的策略或行动。
10. trajectoryn.(抛射体的)轨道,轨迹,弹道;流轨;【数】轨线。
[1]Sinceitsstart,computervisionhasappearedasacomputationallyintensiveandalmostintractablefieldbecauseitsalgorithmsrequireaminimumofhundredsofMIPS(millionsofinstructionspersecond)tobeexecutedinacceptablerealtime.
从一开始,计算机视觉就展示为一种计算密集而几乎难处理的领域,因为需要至少每秒执行几百万条数量级的指令,它的算法才能达到一个可接受的实时要求。ImportantSentences
[2]DedicatedcomputerssuchastheMPPhavealwaysreceivedacoldreceptionfromindustrybecausetheywereexpensive,cumbersome,anddifficulttoprogram.
像MPP这样的专用计算机,由于它们价格昂贵、体积笨重且难以编程而受到工业界的冷遇。
[3]Thebasicideaisthatimportantobjectssuchasactorsshouldretainthehighestvisualquality,whileobjectsinthebackgroundcanbeencodedwithlowerqualitytosavebytes.
基本的想法是重要的目标(如行动者)将保留最高的视觉质量,而背景目标则用较低的质量编码以便减少存储字节数量。
[4]Suchanimageautomaticallydetectssceneswithpeopleand/orvehiclesorothertargetsofinterest,classifiesthemincategoriessuchaspeople,cars,bicycles,orbuses,extractstheirtrajectories,recognizeslimbandarmpositions,andprovidessomeformofbehavioranalysis.
这样的图像自动地检测景物中的人员及/或车辆或其他感兴趣的目标,并将它们分为不同的种类,如人员、汽车、自行车或公共汽车,提取它们的轨迹,识别肢体和手臂的位置,并提供一些行为分析的形式。
[5]Althoughmanufacturersandoperatorsofsurveillancesystemshaveoftenbeenreluctanttoacceptinnovation,recentresultsfromresearchlaboratoriesofmajorcompaniesprovethatthesesystemsarenowreliable,economical,andreadyforcommercialization.
虽然监督系统的制造商和操作员通常不愿意接受创新,但主要公司的研究工作实验室近期的结果证明这些系统现在是可靠的、经济的且已经可以商品化。
(1) Whataffectedcomputer-visionsystemsandpreventedtheirwidespreadadoptionforalongtime?()
A. Chronicproblems.
B. Spacecomplexity.
C. Timecomplexity.
D. Dedicatedcomputers.QuestionsandAnswers
(2) DedicatedcomputerssuchastheMPPhavealwaysreceivedacoldreceptionfromindustrybecausetheywere().
A. expensive
B. cumbersome
C. difficulttoprogram
D. alloftheabove
(3) What’sthemostdevelopedmodernapplicationofcomputervision?()
A. MPEG-4standard.
B. Videosurveillance.
C. Intelligenthome.
D. FaceDetectionProjectatCMU.
(4) Nowadays,computervisionenablestheintegrationofviewsfrommanycamerasintoasingle,consistent“superimage”.What’sthesuperimagemean?()
A. Imagewithhugesizeindimensions.
B. Asetofmethodsofupscalingvideoorimages.
C. Suchanimageautomaticallydetectssceneswithtargetsofinterest.
D. Integrationofviewsfrommanycameras.
(5) AsFig.3shows,theparking-lotsurveillancesystem().
A. locatesthehead,subtractsthestaticbackgroundimage,distinguishesapersonfrommovingvehicles,andcalculatesthespeedoftheheadineachframe
B. distinguishesapersonfrommovingvehicles,subtractsthestaticbackgroundimage,locatesthehead,andcalculatesthespeedoftheheadineachframe
C. distinguishesapersonfrommovingvehicles,locatesthehead,subtractsthestaticbackgroundimage,andcalculatesthespeedoftheheadineachframe
D. subtractsthestaticbackgroundimage,distinguishesapersonfrommovingvehicles,locatesthehead,andcalculatesthespeedoftheheadineachframe
1. Whytheauthorgavesuchadisparatepicturesthatcomputervisionhasappearedasacomputationallyintensiveandalmostintractablefield?
2. Militaryapplicationsareprobablyoneofthelargestareasforcomputervision;doyouthinkittrueornot?Problems
Computervisionisthescience(somesayart)ofprogrammingacomputertoprocess,andultimatelyunderstand,imagesandvideo.Itcanbeviewedassignalprocessingappliedto2D(images),3D(videos),orhigherdimensions.Thisviewhighlightsoneofthemaindifficulties;moderncomputershavea‘serial’design,meaningtheycanonlyprocessonepieceofdataatatime.‘Parallel’processingcomputerswouldbemoresuitableformultidimentionalsignalssuchasvisiontask,andindeed,thisishowthehumanvisualsystemisorganised.ReadingMaterial
ComputerVisionisoneoftheultimateunsolvedproblemsincomputerscience,andsolvingit,orevensmallpartsofit,createsexcitingnewpossibilitiesintechnology,engineeringandevenentertainment.Todaysexamplesrunfromvisualaidsfortheblind,torobotics,tothenewSonyEyeToy!Thefutureofthisquicklydevelopingfieldisonlylimitedbyourimagination.
Mycomputerhasawebcam,doesn’tthatmeanitcansee?No!Awebcamordigitalcameraallowsacomputertocaptureimagesorvideo,recorditandreproduceitonthemonitor.Thisiswhereyoucanseeit.Thecomputernever‘sees’thevideobecauseitcannotunderstandtheinformationintheimageorvideo.Itslikeowningabookwithoutbeingabletoread.Computervisionisaboutprogrammingcomputerstobeableto‘read’theinformationinvisualdata.
ThegoalofComputervisionistoprocessimagesacquiredwithcamerasinordertoproducearepresentationofobjectsintheworld.
Therealreadyexistsanumberofworkingsystemsthatperformpartsofthistaskinspecializeddomains.Forexample,amapofaacityoramountainrangecanbeproducedsemiautomaticallyfromasetofaerialimages.Arobotcanusetheseveralimageframespersecondproducedbyoneortwovideocamerastoproduceamapofitssurroundingsforpathplanningandobstacleavoidance.Aprintedcircuitinspectionsystemmaytakeonepictureperboardonaconveyerbeltandproduceabinaryimageflaggingpossiblefaultysolderingpointsontheboard.
AzipcodereadertakessinglesnapshotsofenvelopesandtranslatesahandwrittennumberintoanASCIIstring.Asecuritysystemcanmatchoneorafewpicturesofafacewithadatabaseofknownemployeesforrecognition.
However,thegeneric“VisionProblem”isfarfrombeingsolved.Noexistingsystemcancomeclosetoemulatingthecapabilitiesofahuman.Systemssuchastheonesdescribedabovearefundamentallybrittle:Assoonastheinputdeviateseversoslightlyfromtheintendedformat,theoutputbecomesalmostinvariablymeaningless.Ifwedidnothaveaproofofexistenceofaverypowerful,generalandflexiblesysteminourownretinasandvisualcortices,theresearchofthepastquarterofacenturywouldseemtoindicatethatthetaskofbuildingrobustvisionsystemsishopeless.
Visionisthereforeoneoftheproblemsofcomputersciencemostworthyofinvestigationbecauseweknowthatitcanbesolved,yetwedonotknowhowtosolveitwell.Infact,tosolvethe“generalvisionproblem”wewillhavetocomeupwithanswerstodeepandfundamentalquestionsaboutrepresentationandcomputationatthecoreofhumanintelligence.
Oneofthemostprominentapplicationfieldsismedicalcomputervisionormedicalimageprocessing.Thisareaischaracterizedbytheextractionofinformationfromimagedataforthepurposeofmakingamedicaldiagnosisofapatient.Generally,imagedataisintheformofmicroscopyimages,X-rayimages,angiographyimages,ultrasonicimages,andtomographyimages.Anexampleofinformationwhichcanbeextractedfromsuchimagedataisdetectionoftumours,arteriosclerosisorothermalignchanges.Itcanalsobemeasurementsoforgandimensions,bloodflow,etc.Thisapplicationareaalsosupportsmedicalresearchbyprovidingnewinformation,e.g.,aboutthestructureofthebrain,oraboutthequalityofmedicaltreatments.
Asecondapplicationareaincomputervisionisinindustry,sometimescalledmachinevision,whereinformationisextractedforthepurposeofsupportingamanufacturingprocess.Oneexampleisqualitycontrolwheredetailsorfinalproductsarebeingautomaticallyinspectedinorderto
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 感染科护理英语查房
- 急性脑卒中病人的护理
- 2024至2030年中国智能压力传感器行业投资前景及策略咨询研究报告
- 中建隧道穿越煤系地层巷道专项施工方案
- 2024至2030年花粉胶囊项目投资价值分析报告
- 2024至2030年管路部件杂质冲洗台项目投资价值分析报告
- 护理人员巴林特小组
- (九年级《语文》课件)专题一
- (九年级《语文》课件)期末专题复习二词语运用习题课件
- 《宝石学与宝石鉴定》教学大纲
- 纯水站日常操作作业指导书
- 设备检修维护记录表
- 外包服务方案范本
- 一年级作文指导ppt课件(PPT 28页)
- 冬季养生注意事项PPT课件
- 聚合物锂离子电池
- 疗养院建筑设计规范
- 华东师大版历史高二上册第六单元第28课《早期西学东渐》课件(17张)(共17张PPT)
- 建筑外窗检测试题
- 基于价值链模型的组织结构优化
- 针织学试卷及答案2套
评论
0/150
提交评论